DESIGN IMPLEMENTATION AND EYALUATION OF AN OPERATING
SYSTEM FOR A NETHORK OF TRANSPUTERS(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CR M D CORDEIRg/G

v N =

- [R DA RS R e e o P P T L2 LY BRSO Y 2 v o a el v M) e

(&

¥
$hp 80y 0

L e em—— -

'
\
.

¥

ot 4

;

[N

0

22

29

- bt
N
be

18

CHART

TN A

16

I
nu
I

I

INLART

ll22

36
B
L F

of

| ° . EF]
JAd 904,12

o

.
—
nll

14

1Y

9,

b dab.

P

=y

MICROCOPY RESOLUTION TS

'M ‘.

|
4l

8,0
¢
11

LR N

1

A AL

4 0 0 Ny

&

Wy

A CAS
R

NN S N XA AR RPN o

L

2 2i0.8"

XP R o
alu - n.l\- a

OTIC FILE Copy o | i

NAVAL POSTGRADUATE SCHOOL -~ ¢

Monterey, Galifornia

Aol ol t.¢ ¥p g e Lo gl la'ata AY, o £'a K- P) w
3 20 8.0 . A h LWL oS ON N

L

EA R AN

AD-A186 593

Vot aAIL f_}.‘['.‘.fl’/.{‘.“ i,s.*'.‘-.""':' {

THESIS

DESIGN, IMPLEMENTATION AND EVALUATION
OF AN OPERATING SYSTEM
FOR A NETWORK OF TRANSPUTERS

. .'-J“'.."f'.l"

by ™

Mauricio de Menezes/Cordeiro

June 1987 :’

Thesis Advisor Uno R. Kodres o

Approved for public release; distribution is unlimited. i

e e - e T L,
a{;.‘..;.’;{m':&{&{ - <

«
«
(5

-

-

-
-
I
-

-
-
-
»

UNCLASSIFIED f"(-
TCURITY CLASSITICATION S PAC A///" < 6/7;5’
N -
REPORT DOCUMENTATION PAGE
18 REPORT SECURITY CLASSIFICATION b RESTRICTIVE MARKINGS ".:
UNCLASSIFIED o
2a SECURITY CLASSIFICATION AUTHORITY) ODISTRIBUTION/ AVAILABILITY OF REPORT 29
Approved for public release;
26 DECLASSIFICATION / DOWNGRADING SCHED ; ’ N
¢ ULt Distribution is unlimited. "4
1 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUNMBER(S) ::)
o, ’:-'
6a NAME OF PERFORMING ORGANIZATION 6b QFFICE STMABO0L 1a NAME OF MONITORING ORGANIZATION
" licad!
| Naval Postgraduate School (“’;;' e Naval Postgraduate School
| .
6¢ ADDRESS (Gify. State. and 2iP Code) o ADODRESS (Cify. State. and 2IP Code) -
Monterey, California 93943-5000 Monterey, California 93943-5000 -
s
8a NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMAER N
ORGANIZATION (1t apphicabie) '
8c ADDRESS (City. State. and 2iP Code) 10 SOURCE OF FUNDING NUMBERS r
PROGRAM PROJECT ras« WORK _NIT o
ELEMENT NO | NO NO ACCESSION NO
"1 TTLE (Includ ty Classificats - =
nclude Secunty Clasubication) pEgTGN, IMPLEMENTATION AND EVALUATION OF AN OPERATING
SYSTEM FOR A NETWORK OF TRANSPUTERS
2 PERSONAL AUTHOR(S)
CORDEIRO, MAURICIO DE MENEZES :
“3s Trir OF QEPORT "Ib T'ME COVERED 14 DATE OF REPORT (Year Month Day) ['S PAGE COUNT -
Master's Thesis seOM_to June 1987 163 -~
"6 SLPPLENENTARY NOTATION T R
Sow
o Cosam CODES '8 SUBIECT TERPAS (Continue on reverse f necessary and dent.ly by D/Ock number) %'
£ ELD GROUP SUB-GROLP Transputer,0Operating System, OCCAM, TDS, ﬁetwork,)
Concurrent Processing, Distributed System, Routing, - NN
Message Communications » . ~
"3 LBSTRA(CT (Continue on reverse if necessary and «dentify by block number) e
This thesis presents the Design, Implementation and Evaluation of an Operating PY
System for a Network of Transputers, with main focus on the Communication A -
Subsvstem. It also introduces the novice to the Transputer Development System e
(TDS), and suggests a scquence for developing applications.) v
All the programs and examples presented in this thesis were implemented in the T
OCCAMI1 Programming Language, and using the Transputer Devclopment System ‘.
(TDS-D600), running under the VAX/VMS Operating System at the Naval i
Postgraduate School (NPS).
{0 DSTRIUTONAVAILABILITY OF aBSTRACT 2V ABSTRACT SECURITY CLASSHIICATION
® . vCassuieouNuMITED [SamE as apr Cornc useas UNCLASSIFIED
J2a NAME OF RESPONSIBLE 'ADVIDUAL 220 TELEPHONE (Include Ares Code) [22¢ OFF(t Y MBUL
Prof. KODRES, UNO R. (408) 646-2197 Code 52Kr
0D FORM 1473, 8aman) 8) APR egition may be Lred until exhausted SECURITY CLASSIFICATION OF Twi§ PAGE
All other #d:t:0nt ar@ ObsoOlete - o
1

WX

A ATy

TR a0 alotabaoad tak dal tat g G0 S0 A0 e Gt a0t s bob bt Rl A B s

Approved for public release; distribution is unlimited.

Design, Implementation and Evaluation
of an Operating System
for a Network of Transputers

by

Mauricio de Menezes Cordeiro
Lieutenant, Brazilian Navy
B.S., Brazilian Naval Academy, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author: /‘PMW' Lt (P ! Qmiuf

| Mauricio de \Aepz_zcs ordeiro

Approved by: /L(,\ - / /o AL

Y Uno R. Kodres, Thesis Advisor

@W

Dantel L. Davis, Sccond Reader,

[t

~ Vincent ¥, Lyn, Chairman,
Department of Computer Science

Dean of Information and Po

2

P

e nd W alehecd

PR -

LA

0|
A5

“a
»
A

)

ABSTRACT

[]
I

(2

hY

This thesis presents the Design, Implementation and Evaluation of an Operating
- System for a Network of Transputers, with main focus on the Communication

- 5 8 1 -
[y a & B
\'¢ A

Subsystem. It also introduces the novice to the Transputer Development System
(TDS), and suggests a sequence for developing applications.

L)

poe

All the programs and examples presented in this thesis were implemented in the

[] :‘ .l "l

-~
.

e

OCCAMI1 Programming Language, and using the Transputer Development System
(TDS-D600), running under the VAX/VMS Operating System at the Naval
Postgraduate School (NPS). .

[

".
¥

'_'w‘}\. .

.y 4 *.‘.'-

Y R

W L |
Py
e

XA

EhN N
ALt SS S
AT T g |

4
1O
— (4]
iy 0
i
S~z
‘
1
'
Q‘:
v
AR
.
4 LA

e
IS
L.

P

Yo
.

o fcnl’l‘. .

P (2
-v
v

'-
3
x
-

&y § !

Luw i E o
- . - _-—.' «* >'-‘.
P 1 O

pom e S P T

e "2 2" a8 e et L S U Ay JU A TR AT I SRR IR e SN
Ol R NN) o SR Nt i N VR R N Y O SR N

N ala Al aRaala Al AGs AR SN B s B W I AJh Y

ST s R

THESIS DISCLAIMER

;‘; The reader is cautioned that computer programs developed in this research may
E not have been exercised for all cases of interest. While every effort has been made,

Y within the time available, to ensure that the programs are free of computational and
logic errors, they cannot be considered validated. Any application of these programs
5'. without additional verification is at the risk of the user.

!

Many terms used in this thesis are registered trademarks of commercial products.
Rather than attempting to cite each individual occurrence of a trademark, all registered
trademarks appearing in this thesis are listed below the firm holding the trademark:

Digital Equipment Corporation, Maynard, Massachusetts

VAX 11/780 Minicomputer
VMS Operating System
VT-220 Terminal
VT-100 Terminal
Digital Research, Pacific Grove, California
CP/M 86 Operating System
INMOS Group of Companies, Bristol, UK
Transputer
Occam
INMOS
IMS T414
IMS T800
TDS
OPS

Intel Corporation, Santa Clara, California

1ISBC 86/12A Single Board Computer
Multibus
8086 Microprocessor

Microsoft Corporation, Bellevue, Washington
DOS Operating System

Xerox Corporation, Stanford, Connecticut
Ethernet

Zenith Data Systems Corporation, St. Joseph, Michigan

Z-248 Microcomputer

h au T M A% 0N J
-

A AN A As

. . - .
sfet e
B Y]

[T
o

.. -- ,l -. v

o
.

e S Y% .

'._
.l'

..' s’ [

ANy Yy

'l"l.

.
x

i
A4

' TABLE OF CONTENTS
L. INTRODUCTION .. i it e e et et 13
A. BACKGROUND ... it e i 13
l. The AEGIS Projecto 13
5 2. Transputer Review i 14
3. The Transputersat NPS i, 17
E‘ B. PURPOSEOF THISTHESIS i, 18
, C. THESIS ORGANIZATION i 19
: I1. AQUICK TDS TUTORIAL . .. oo 21
A, WHAT IS TDS 7 o e e e e e 21
B. STRUCTUREOF ATDSPROGRAM v, 23
C. RECOMMENDED SEQUENCE WHEN DEVELOPING
APPLICATIONS .. i e e e i i e 26
D. CONVERTING OPS INTO ONE-TRANSPUTER TDS
PROGRAM .. i i e i 29
E. MAPPING FROM ONE TO MANY TRANSPUTERS 30
F. CONFIGURING A NETWORK OF TRANSPUTERS 33
G. CUSTOMIZING YOUR ENVIRONMENT0, 39
II. OPERATING SYSTEM DESIGNt 41
A, WHY AN OPERATING SYSTEM 7 i J1
B. THE DESIGN i e 42
. ImputHandler 49
2. OutputHandler i 50
3. ScreenHandler 30
Iv. OPERATING SYSTEM IMPLEMENTATION ...t 52
A. INPUTHANDLER ... i i e 52
B. OUTPUT HANDLER i 55

C. SCREENHANDLER i 59

U AR W'!“X.'\(.'VK.“ AL OLGA QA AL GG A g 0t LAt a gt h ot ate a¥) pht oka ot) otd 2iih ata ot N W W W WU W WOR U VC YOW WL v UwU Y

d
D. THE ROUTING TABLEvvv oo, 60 ¥
E. OPERATING SYSTEM LIBRARY ROUTINES 62 "
1. TheSend Routineciiirirrirriieenennanns 62 !
2. The Receive ROULING vvi ittt et e e 64 1
3. The Root Library (ROOT_LIB.TDS)...........ccvvvvnn.. 65
4. The Remote Library (REMOTE_LIB.TDS) 65 i
V. EVALUATION OF THE OPERATING SYSTEMc...... 67
A. INTRODUCTION ...t e e e iiia e e 67
B. A BRIEF DESCRIPTION OF THE EVALUATION 67 :
C. EXPERIMENTAL RESULTS .''vvvvirereeneeaaanannnn, 71 ‘
1. Evaluating Direct Communications |
2. Evaluating Multiple Path Communications
D. EFFECT OF THE HEADER SIZE IN THE TRANSFER
RATE i et e e e e e e e e
E. A CONTROVERSIAL PROBLEMciiniinnnn.. N
VI USING THE OPERATING SYSTEM ...ttt et e i,
A, INTRODUCTION ... it i e i e e e
B. THE REQUIRED PROGRAM STRUCTUREccvvt.
C. PROGRAMMING WITH THE OPERATING SYSTEM
D. ADVANTAGES OF THE OPERATING SYSTEM
E. CUSTOMIZING THE OPERATING SYSTEM
VII. CONCLUSIONS AND RECOMMENDATIONS ...,
A, CONCLUSIONS . e e
B. RECOMMENDED FOLLOW-ONWORK
APPENDIX A: OPS GLOBAL DEFINITIONS (GLOBAL_DEF.OPS)
APPENDIX B: TDS GLOBAL DEFINITIONS (GLOBAL_DEF.TDS)........
APPENDIX C: TDS LIBRARY ROUTINES WITHOUT OPERATING
SYSTEM (LIBRARY.TDS)
APPENDIX D: THE OPERATING SYSTEM FOR THE ROOT
TRANSPUTER (ROOT_OS.TDS) ... ev e,
7

T SR T :
A ERARA R SR e e, ACCE R N AN S . A P) S IR S S Rl T TN S EIL JP
E'I A o N S N T N e o RN R e A N T e e e

‘‘‘‘‘

APPENDIX E: THE OPERATING SYSTEM FOR REMOTE

TRANSPUTERS (REMOTE_OS.TDS)ooovviivnnt, 127
APPENDIX F: THE EVALUATION PROGRAM FOR THE
OPERATING SYSTEM (EVAL_OS.TDS) 143
LISTOF REFERENCES i i e e 158
BIBLIOGRAPHY .. i i e e e 159
INITIAL DISTRIBUTION LIST e e 160
8

N T p e o e e e N e e e A P P AT T T
N O R N N R N N R A A A A A A N, S N W A BRI Lo :

LIST OF TABLES

TRANSFER RATES WITHOUT THE OPERATING
SYSTEM BETWEEN ADJACENT TRANSPUTERS (KBITS/SEC)

TRANSFER RATES WITH THE OPERATING SYSTEM BETWEEN
ADJACENT TRANSPUTERS (KBITS/SEC) oo

TRANSFER RATES WITH THE OPERATING SYSTEM (HIGH
PRI} BETWEEN ADJACENT TRANSPUTERS (KBITS/SEC)

TRANSFER RATES WITH THE OPERATING SYSTEM IN 2 HOPS
(KBITS/SEC) .t e e e e e e e e

TRANSFER RATES WITH THE OPERATING SYSTEM IN 3 HOPS
(KBITS/SEC) .o e e

* TRANSFER RATES WITH THE OPERATING SYSTEM IN 4 HOPS

(KBITS SEC) oo e e e

TRANSFER RATES WITH THE NEW HEADER BETWEEN
ADJACENT TRANSPUTERS (KBITS/SEC)t

76

76

)

-

R e

1.1
1.2
1.3
2.1

29

o

2.3
24
2.5
2.6

2.7

-~
r

2.9
2.10
2.11
3.1

2
« ho

3.3
34
3.5
3.6
4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

A

LIST OF FIGURES

T41d and OPS Timerso vii i e e et e i een 15
TA1d Memory Spacev ittt e e 16
B0O03 board and its fixed CONNECUVILY . . . oot v vttt et ei e 18
DEC VT-100 Kevboard Layoutt enenn. 21
Program Structure in TDS 24
A Network with four Clustersooiuiiiii it 28
OPS programo 31
Converting to TDS e 32
The Previous Program Mapped onto many Transputers 33
Steps 1, 2 and 3 of a Configuration e 36
The Complete Configurationoiiiiiininninnnenenen.. 37
A Simplified Configurationottt e 38
File eXtensionst e 40
Sample login.com for the VAX/VMS 40
The Message Header Format it 43
The Possible Communications Paths oL, 44
An OCCAM Limitationottt e et it 46
A Sample Channel-id Table i i, 47
User ADSITaCION ..ottt et e e e 48
Operating Svstem Block Diagram........ oL 49
A General View of the Input Handler 52
Input Handler Source Code (Partial) i, 34
The Output Handler i 56
The Expected Behaviour 37
The Actual Behaviour 57
The Parallel Solution 58
Checking the Routing Table for Cycles 63
The Configuration used in the Evaluation Process 68

10

N R B T e T e e S L U PR
S I A T S R R ~ N -

ol Sl Gl Al Salo Sl Ak Solif Gl il Sk Bl Sl Sl R il Ul Sl At el S ol A

[N
v
|
!
|
|-
I
|-

5.2
5.3
54
5.5
6.1

The Transfer Program in the Root Transputer (Partial) 70

Transfer Rates with Direct Communicationsc.covvtvnrereereen 74

Transfer Rates with Multiple Retransmissionscovivent. 77

Effect of the Header Size in the Transfer Rate coovtn 79

The Program Structure when using the Operating System 82
11

e .-’ e :- "-".r,'.r - AT - RN RS s s .‘r

pairl A I AP

e A

'
)

ACKNOWLEDGEMENTS

Dedico esta tese a2 minha esposa Cristina e aos meus filhos Igor e Lucas, pelo
amor, compreensao e carinho dispensados durante toda esta dura jornada.

Aproveito a oportunidade, para expressar todo o meu amor ¢ reconhecimento a
meus pais Franklin e Helena, sem os quais esta tese e eu proprio nao existiriamos.

* A minha sogra Maria, o meu especial e sincero muito obrigado, por todo o apoio

e carinho dispensados a minha familia, por ocasiao do nascimento de meus dois filhos.

To my thesis advisor, Professor Uno Kodres, I would like to thanks for all the
confidence and support, which has never stopped, even when he was passing through
some health adversities.

Finally, I would like to send a speccial thanks to the Technical Staff in the
Computer Science Department, especially to Michael Williams, Walter Landaker,

Russell Wallen and Rosalie Johnson, for all the support we were given throughout this
thesis.

12

x
.

M T AT T N AT AT m e T AT T T T AT T AT T T e e L Tt T) A AT R ‘. ~-,.~ BRI .- «' e w
7 -*\. '-).\', AL N '_\J\“.x¢\'_‘$_. . _.\-.\.._.-_._ ORI ._:-'_ O) . A e . o
- " . . N - v . -

e

. .
v .

bl Sl Aadt Sl ol B ol 00 A gl

el B

. TR C . D
¢ aad .0 Aat 2ab el el 08 Rb oY) gwpeT o ake 2t an ‘Atatatoiaboiat gl ‘Al aly alaValo At ol takot tof Gof Nl 4 0 o

I. INTRODUCTION

A. BACKGROUND
1. The AEGIS Project

The research interests of the NPS AEGIS project embraces a broad spectrum
of topical areas within the Computer Science Department. Initially found in the late
1970's it had the primary mission of investigating alternative architectures for the
AEGIS Combat System, which are being deploved on board of the U.S. Ticonderoga
class (CG-47), whose central unit is the 3D Phased Array Radar AN/SPY-1A.

The basic thrust of this research is the belief that the same software svstem
running under the old and expensives AN UYK-7 computers could run equally well, if
not more efficiently, in the commercially available VLSI microprocessors.

A sequence of projects have culminated in the successful Real Time Cluster
Star Architecture (RTC*).

The RTC is a multiple microprocessor system with a hierarchical bus
structure resembling the Carnegie Mellon Cm" architecture. RTC' is specifically
suited for the development and implementation of real time, concurrent sensor data
gathering, display and control systems, which are some of the typical applications in a
Weapons System [Ref 1]

Presently, the RTC” is composed of two clusters, each containing four INTEL
Single Board Computers based on the 8086 microprocessor. These single boards have
from 64K up to 128Kbyvtes of dual port dvnamic RAM being shared among each
cluster, with part of this memory space being virtually shared between clusters. All the
boards are connected to the INTEL Multibus through an interface control logic unit
ang the communication between clusters is done via an ETHERNET link.

The software system to support the RTC" was done in parallel with the
hardware design and after six vears of iterative engineering, retinement and extensions.
it evolved to the E-MCORTEX operating system, which was integrated in 1984 as a
system software laver over the multiuser CP/M 86 operating system [Ref. 2: p. 10].

As time progresses, the old AN;UYK-7s in the AEGIS system are being
replaced by the new AN/UYK-43's, and as expected, in probably less than one decade
they will not be capable of handling the increasing demand for some more complex
software systems.

13

-

“r % % Ta ¥ e

N

That is why the NPS AEGIS Modeling Project, trying to keep up with all the
upcoming new technologies, has added to its Laboratory a network of eighteen
transputers, which can be very easily connected in various configurations, to allow the
user to evaluate and compare them, in a performance basis with the RTC"
architecture.

2. Transputer Review

The term transputer is an acronym for “transistor computer” where it reflects
the ability of this device to be used as system’s building block, much like the transistor
was tn the past. The nice feature of the transputer is that it adds a new level of
abstraction, which provides a very simple way to design concurrent systems.

As a formal definition we could state that a transputer is a single chip
microcomputer with its local memory and with four independent links for connecting
one transputer to another. The links may be thought of as small special purpose
processors which steal no cycles from the main cpu, in such a way that we could have
all four links and the c¢pu working at the same time, without degrading the performance
of the program'’s execution [Ref. 3].

The interprocess communications are done through channels, using a strictly
message passage schema where shared memory is not allowed. Each link provides two
channels, one in each direction. A message is transmitted as a sequence of -bytes and
the way the transputers know when the other transputer is ready to receive a message
is as follows: the first transputer to become ready transmits the first byte of the
message and once it arrives in the other end, it is stored in the buffer of that link, and
just when that link is ready to receive the next byte an acknowledge signal is sent back.
Each of the links must maintain a buffer of one byvte long for this purpose.

The communications between links is bytewise asvnchronous and not phase
sensitive, but it is, obviously, bitwise synchronous, otherwise we could not sample the
bits correctly.

a. The processsor and its scheduler

The transputer, IMS T414. is a general purpose 32 bit microprocessor with
a maximum throughput of 10 MIPS.! It is highlv optimized to implement the OCCAM
Programming Language and it has a reduced instruction set, where many of the
instructions are one byte long.

e depends on the type of the transputer, more specifically on the internal clock
under which it is running. The following values apply: T414-12 (6 MIPS), T414-15 (7.5
MIPS) and T414-20 (10 MIPS).

14

L T O o A i S I N U
B St .
4 / Lol

e e
- -7 . - . - - - . B - . - - « . R -

LT Rt S e T T e A e

P P N P R P P P . PO A R R Y A N AL P R L AT

.,-.'.P e .- ‘-_> - -._-.f'.;

e

‘u.

. L
" J':‘.- Ny
e

1 RN AR w“al el ‘el ¥

The processor supports two priority levels, high and low, and for each of
them it keeps a queue of ready processes. The low priority processes will run only when
there are no high priority processes in the queue.

The OCCAM parallel construct is implemented on a single transputer, by
timeslicing the processes which are ready at any instant in time. A process 1is
descheduled if it has to wait for communications, timer input or if it completes
processing. Another possibility for descheduling, valid only for low priority processes is
when its timeslice is finished, so that the next in the queue will be activated. Each
timeslice period lasts for approximately 800 microseconds.

b. The T414 Timer

The resolution of the timer.depends on which board we are talking about.
On the BOOI the timer has a resolution of 1.6 microseconds per tick, while in the B003
we have 1 microsecond for the high priority processes and 64 microseconds for the low
priority ones. If working with the VAX-VMS the timer ticks every 100 nanoseconds,
but it is updated just every 10 milliseconds.

The value obtained from the timer is a signed integer which wraps around
at MAXINT (231 .- 1 = 2147483647) and MININT (- 231 = -2147483648), so that
attention is needed when trying to subtract times. See Figure 1.1 for a summary.

Resolution Half-Cycle
BOOl 1.6 usec/tick 57.3 min
B003 gﬂlgh) 1.0 usec/tick 35.8 min
B0O03 (Low) 64.0 usec/tick 38.2 hrs
OPS (VAX-VMS) 100.0 nsec/tick 3.6 min

Figure 1.1 T414 and OPS Timers.

c. Memory
The T414 can directly access a linear address space of up to 4 Gbyvtes. The
32 bit wide memory interface uses multiplexed data and address lines and provides a
data rate of up to 25 MBytes/sec.

2A routine called tick.to.time will be provided in the O.S. Library Routines, such
that all the cases will be handled properly.

15

e " % e~ a® &’ - ~ g e . T, et Cme e Yw el e taltW e RN AT P I I S TLR SR JAJE R
DN N S AT A N N N R TR I S Sy il
L] » b

h I

S A Y S

i

AV

Vo

o LD

<

. t.l{f(,'

TR RrORADE

1@ fatots

There is 2Kbytes of on chip memory which provides a maximum data rate

of 80 Mbytes/sec and can be shared among different users through the internal system

bus. The latter value is obtained when using a memory with access time of 50

nanoseconds, but it also varies from transputer to transputer.

The address space of the T414 is signed and byte addressed. It ranges from
#80000000 which is equivalent to MININT, up to #7FFFFFFF which is MAXINT.
The first 2K of memory, in other words, from #80000000 up to #80000800 reference on
chip memory, where the first 72 bytes are reserved for system purposes. See Figure 1.2.

TFPPFFFP

TFFPFrPE

80000030

8000001C

8000001 4

80000010

$0000008
80000004

= & & % BB 3 3 ® %

20000000

TOP OF MEMORY

BOOTSTRAP FROM ROM

PERIPHERAL BASE ADDR.

TOP_ON CRIP MEMORY

MEM START

EVENT

LINK3in

LINK2in

LINKtin

SYSTEM MEMORY

LINXKOin

LINK3out

LINK3out

LINKiout

LINKOout

Figure 1.2 T414 Memory Space.

16

DS AR e 'j
ol '.A\A_l:.‘"_‘\.‘\

At APAN A Alaih A RN e gte 40 ala ALANE Yl SaL Sal

d. Links
The T414 has four full duplex standard links, each providing two
unidirectional channels. The links can be thought of, as described earlier, as a special

purpose processor which has some DMA block transfer capabilities.

The speeds of the links may be selectable from 10 Mbits/sec or 20
Mbits/sec on the BOO3 boards, with no choice other than the standard 10 Mbits/sec on
the BOO!1 board. The B0O3 board has the additional capability of maintaining link 0 at
10 Mbits/sec while the remaining links 1, 2 and 3 are at 20 Mbits. Therefore, -care
must be taken to enforce that both links connecting the B0O! and the B00O3 board are

R A oul g dn e g

working at the same speed, 10 Mbits, sec.
3. The Transputers at NPS

} As far as hardware goes, we have in our Lab a Transputer Evaluation Module

| with four boards B003’s, ecach containing four 32 bit transputers T414-15 {15 MHz)

k plus 256Kbytes of dynamic RAM per transputer. The fifth board we have is the B0OO1
with a 32 bit transputer T414-12 (12.5 MHz), 64K of dvnamic RAM and 128Kbvtes of

S EPROM containing the bootstrap loader, the memory test and the transparent mode

software. This board is directly connected to the host computer (VAX;VMS in our

case) through a RS-232 serial port and it also provides an additional port for attaching

one monitor. '

We also have another board which is the B004, which is placed in one of the
slots of a personal computer Zenith 248. This B004 board contains a 32 bit transputer
T414-15 (15 MHz) and comes with 2Mbytes of dynamic RAM on board. Its basic
function is to provide an interface between the PC and the network of transputers, but

it also allows us to run programs in its transputer, much likelv the BOO1. For additional
information about all the above mentioned boards, please refer to their respective
user’s manual [Refs. 4,5,6].

It is important to notice that the B003 board does not allow one to have
access to the links 2 and 3 of any of its transputers. They come in a fixed configuration
{see Figure 1.3), where the only links the user can connect however he desires are the
links 0 and 1.

At present we have three software packages on which we can either simulate
or actually generate code for the transputer. They are:

¢ OCCAM Progamming System (OPS) which runs under the VAX VMS
Operating System and allows one to simulate the transputer environment, using
the OCCAMI1 as the primary language. The code generated by the OPS

17

ot agd Bt

E:
B
A B003
1Y L1 Lo
E L2 [L1
'\ -1 TO [--=--4 T1
" Lo L3
- L3 L2 5 MHz
:s L2 L3 Ju
- L3 {Lo
i\ 18 == e [

L1 L2|__

Lo l 'Ll

- j

i

Figure 1.3 BO003 board and its fixed connectivity.

compiler is for the VAX/VMS, so that no valid time measurements can be
made, nor can we run truly multiprocessor programs. As it stands right now 1t
1s just a very good tool tor teaching purposes, since it allows many users to run
and test their programs, concurrently. Another use of the OPS would be in the
early stages of the design, for checking the correctness of some moduiles, before
running them on the transputer itself.

¢ Transputer Development System (TDS-D600) which also runs under the
VAX/VMS Operating System, and whose compiler generates transputer code
which can be later on extracted and downloaded into a transputer network. One
of its differences from the OPS is the conliguration part, where a program can
be configured to run in various processors, which are connected in some
specified way. The primary language is still OCCAMI.

e Transputer Development System (TDS-D701) which is very similar to the D600,
although more powerful, and it runs on an IMS B004 board in collaboration
with a small program running under the DOS Operating Svstem in a personal
computer, which provides access to the PC's resources. [ts primary language 1s
OCCAM?2 which has data types, floating point arithmetic, among many other
things that are not provided in OCCAM 1.

B. PURPOSE OF THIS THESIS
Since this is one of the first thesis to make use of the transputer hardware,” our

mission was to create a user {riendly environment, with all the software necessary for

future users to develop their application programs.

3We had two previous thesis on transputers, but they were actually designed to
run under the OPS in the VAKX, since we had no transputers at the time they were
written {Refs. 7,8).

18

o Ry e . N L I I N e N S U N R
SR S R T SN S N R R T I TEIE AL L Vol e VO T T & &'-‘-_".“-\"\\"\ LYo hd - e R A AR A OO
B A e A S I N e A AT AP AR o, L{A".&'.\.'-h'.h'(mdh't‘h{l\. P L e A A

P A A _ et ata M A AN Pl W R BB AL

, - —ar e BA 0B bk A’ & 8’ 8 hd LA e
s ae e R reath s A" 0 “, 9, Wl Y, 9,
) lab ' A8 A \ DR e A% e Ba . -

The tools we are about to describe embraces a library with all the basic I/O
routines, such as output to the screen, input from the keyboard, capability of
formatting the screen and to write and read from VMS files among others. Also we
have developed some utility routines which will allow anyone to dump parts of memory
and to get the real time in a readable format anywhere in the program.

However, the central focus of this thesis is on the design and implementation of a
basic Communications Operating System, which would make it easier to program a
distributed network of transputers. All the effort was made to carry out this task and
after many, many changes, we ended up in a very simple and effective design. We are
not claiming that this is the only one or the best way of doing it, but it is our hope
that it serves as a firm foundation for future and more enhanced implementations.

We also evaluate what is the overhead imposed in the program'’s execution time,
when running under the Operating System, which constitutes one of the most
important concerns when dealing with real time systems.

Unfortunately, when this thesis was started we didn't have the OCCAM2 version
available to use as our primary language, which would have made life much easier. As
a result we are using PROTO OCCAM or OCCAM! throughout the entire thesis.
which is a very simple but primitive language, with no data types, no channel
protocols, no floating point arithmetic, etc....

As an auxiliary learning tool we will provide for the novice user of the
Transputer Development System for the VAX;VMS, a quick explanation of all its
features, its required program structure, its drawbacks and all the points we found

obscure in the manuals, whose knowledge would have saved us a lot of hours of
reading.

C. THESIS ORGANIZATION)
Chapter II begins with a brief overview of the Transputer Development System.
in order to assist the reader in understanding its basic features. Next, we suggest a
sequence for developing applications, where we present a very thorough description of
all the steps involved. Still in this Chapter, we develop a very simple methodology for
configuring a network of transputers. The remainder of Chapter II is devoted to some
general suggestions, in order to make the working environment, as friendly as possible.
Chapter [II describes all major design decisions we had to make, in order to

implement the Operating System. The main purpose in doing that, is to provide the

19

AT

(O A A AR

N \. ‘l' -.. ‘; H. 0 \ 4\

-
£

5 %9

PO TOR SUTPOR POUR PO U O T PUR UK PO P YO PO U ™) B 4.0 o0 gon B0 v ot g g fSa®Jis" S2%a0° Aavalln *45a" ang " ol il g CYY NI Y

d’ffd'-'

2%

reader with a precise conceptual understanding of the system, which would enable him
to perform some major changes in the system, if it is so needed. It also presents a
general block diagram of the Operating System.

Chapter IV describes the implementation of the modules in the Operating
System. The Library Routines are also covered, mainly the “send” and “receive”
routines. A complete guide explaining how to use the routing table is also addressed.

Chapter V evaluates the performance of a program running under the operating
system. All the evaluation is done in a comparison basis with the one made by Vanni
J.F. in his thesis [Ref. 9], where the transputer is completely evaluated. In this Chapter,
we also perform the evaluation of the operating system, when handling multiple hop
communications. At the end of Chapter V, we measure the effect of the header size on
the transfer rates.

Chapter VI basically describes how to use the Operating System, under the user’s
point of view. The required program structure is also presented, as well as some hints
in how to program with the operating system.

Chapter VII is the final chapter, which includes the conclusions and some
suggestions for follow-on work.

Appendices A and B includes the global definitions to be used in either OPS or
TDS.

Appendix C contains the file LIBRARY.TDS, with all the available routines to
be used in TDS, without using the operating system.

Appendix D contains the source code for the Operating System in the root
transputer, while Appendix E contains the remote version of it, in other words, the one
which is to be run in remote transputers.

Appendix F describes the evaluation program used to evaluate the Operating
System, and it also serves as a sample example on how to use the operating system.

20

e - \,'\(‘, . \f -_.- 1_‘ .~. R e AN T T T T T e

hY .' LI A
(9 * 9 ~ AR LT S AL AT S SRR YT, Wy

L BRI

II. A QUICK TDS TUTORIAL

A. WHATISTDS? '

The name TDS stands for “Transputer Development System” and it is basically ,
built around the concept of "folding”.

e

Its fold editor is the principal interface between the system and the host
computer. It allows the user to insert, edit and delete Occam source text, and to save
this text into a VMS file.

Besides its general and standard editing functions, it also contains a sct of ten
utilities and three special functions, which perform extended tasks with a TDS
program.

We will now cover the basics of its folding system, describing all the available
commands. We hope that by now the reader has already been exposed to the cditor
tutorial, where all the basics about “folds” is covered. It 1s also important to notice at
this point, that this editor uses a very unusual sequence of keystrokes and therefore it
is of primary importance to have the correct terminal driver running under it. We will
assume hereafter that the system we are using is the TDS for the VAX and that our
terminal is the VT-100 or VT-200 (in VT-100 mode), but if that is not the case, plcase
refer to the TDS Installation Manual [Ref. 10: Section 1].

=l
UTILITIES UNDEL | {UNTILE
FUNC 11 TRANSPUTER CHEECK DEL RT | [ORL LN FILE !
FUNC 2¢ TRANSPUTER COMPILS y
’
FUNC 3. MALE PROCRAM bl uir
FUNC 41 MALR SC PROC OPEN CLOSE
PURC & DESCRIPTUR INPO
FPUNC &. EITRACT T0 PILB
I STt | [T - Ty
FUNC 71 VIRING DIACRAM LINE 0Py LINE ! \
FUNC &1 SEARCE
PACE LT PACE DN ‘
FUNC 0: RKPLACE wove j
U
FUNC 0. LIST Livg L L o | oo
YU b ERLP
FUNC £ POLD INTO R8FRESE C:::l
FIN
FURC o1 SETUP runc nise ;

Figure 2.1 DEC VT-100 Kcyboard Layout.

21

e N R AT AT T AT AT A T L e AT T e e .-
AT A AN L e NN AN ’

. . e
AL A AL QLG PR TS TR T Aadad i ol

Rtgd’d 0l At ALl atR Attt A ata ¥k U= ot aulat el paw. dot Bat RIXTR TR ITY A S RA R Ae A A% o B NN R A e ke S ANe B, RUs BN) o AR BN ":-n]
1

A Besides all the editing features common to all editors, the TDS has in addition
S what we call “utilities”, which are the following:

) e Utility 1 (TRANSPUTER CHECK) - It checks the syntax of occam programs,

as well as the consistency of variables and channels used inside PAR constructs.

L~ When dealing with more complex structures like for example nested PARs,
» etc...very often we will have to turn off the “UsageCheck” which is found inside
o its parameters fold, otherwise it will give us all sorts of error messages.

', e Lulity 2 (TRANSPUTER COMPILE) - It compiles PROGRAMs and SCs
. PROCs or it may configure an Occam program to run in a network of
o transputers. In addition to the same checking performed by Utility 1, it also
P generates code for the transputer, placing it into a fold. Actually, it generates
-:_'. two folds: the descriptor and the code folds. It shares the same parameters fold
- with Utility 1.

o Ltility 3 (MAKE PROGRAM) - It produces a compilation fold marked as a
3 main program fold. It should be used only in the outer fold to specifv the whole
program to be downloaded into the network. Typically we will have inside such
a fold all the SC folds for each of the transputers being used by that program.
plus the configuration fold which carries all the information regarding the
connectivity of the network.

[v

A e Uulity 4 (MAKE SC PROC) - It produces a compilation fold marked for
v separated compilation. All the processes to be run in a specific transputer must
W : be placed inside a SC, which will be eventually allocated to that transputer in
the configuration part.

e Utility 5 (DESCRIPTOR INFO) - Provides information about any SC fold. It

uses e descriptor fold to get information such as entrypoint, program size,
etc....

e Ltlity 6 (EXTRACT TO FILE) - It extracts the compiled code that lies inside
the “code fold” generated by the compiler and exports it to a VMS file. There is
one parameter toid which prompts the user to enter with a filename to which to
export that code. The default filename is “ops.ted”.

e Ltlity 7 (WIRING DIAGRAM) - This utility creates a fold with a textual
description of all the link interconnections needed for the configuration specified
in that program. This utility is, indeed, very helpful when setting up vour link

; connections. '

e Uulity S (SEARCH) - Searchs for a string from the actual cursor position up to
the end of the foid on which 1t was applied. [t doesn't ailow the use of any
wildcard characters.

o R v e 4

e Ltlity 9 (REPLACE) - Replaces the string we are searching for, by another
string. It shares the same parameters fold with the searching utility.

e LUulity 0 (LIST) - Produces a printable listing of the contents of a fold and
| places it into a VMS file. It prompts the user to enter with a filename.

L,

22

Besides the above utilities we have three more special functions which are:

e Func h (HELP) - Displays a list of all ten utilities provided by the TDS, with a
brief description.

¢ Func f(FOLD INFO) - Displays the type of the fold and its contents.

¢ Func s (SETUP) - Allows the user to change any of the parameters fold already
instantiated with new values.

Once we have gone through this brief description of what TDS is, we should now
have the feeling that TDS is very closely related to its fold system. Unlikely other
systems where we have a physically separated editor, compiler and linker, in the TDS
we have all in one. Also another good point about this approach is that if you get an
error while compiling you will be placed right at the error in editing mode, and once
ready just call the right utility to compile it again !

The way this editor handles external files is also very unique. What we have to
do is just to open a fold, name it with the filename and extension of the file we want to
be attached to this fold, press the file key PF3 and that is it. That is how it does the
job of linking almost transparent to the user.

Just for the sake of completeness, it is worth mentioning the system files which
are used by the TDS: '

e TDSVTI00.0BJ - Transputer Development System for VT-100 terminals.
e TDSVI920.0BJ - Transputer Development System for the TVI-920 terminal.

e TDSTABLE.OBJ - Transputer Development System with table-driven
terminals.

¢ OPSKRNL.OBJ - TDS Kernel which is identical to the OPS kernel.

¢ TDSSETUP.COM - It is a VMS command file which sets up the TDS
environment. Must be executed in the beginning of every session.

B. STRUCTURE OF A TDS PROGRAM

In this Section we will cover the basic structure of a TDS program when running
without the Operating System, which will be covered in later Chapters. Anyv program
intended to run under TDS, in other words, in a transputer network, must have a well
defined structure, which doesn’t allow much freedom for changes (see Figure 2.2).

The basic idea is that for each different process to be run in a different
transputer, we must make it a separately compiled unit. The number of parameters
depends on how many hardware links are being used by that process, and also if any

constants are coming as parameters from the configuration part. As we already know,

b I It o

PROGRAM progname
SC transputer.l (CHaN A,B,C,D,E,F,G,H)
PROC transputer.l =
««. global definitions
... library routines
... PROC terminal.driver
... PROC user.l
PAR .
terminal.driver
user.l:

SC transputer.2 (CHAN A,B,C,D,E,F,G,H)
PROC transputer.2 =
oo global definitions
... library routines
... PROC user.2
SEQ
user.2:

°
(-]
-]

SC transputer.n (CHAN A,B,C,D,E,F,G,H)
PROC transputer.n =
‘o g;obal definitions
.. library routines
... PROC user.n
SEQ
user.n:

... configuration declarations

PROCESSOR 1

... channel placements

transputer.l (...placed channels...)
PROCESSOR 2

... channel placements

transputer.2 (...placed channels...)

PROCESSOR n
... channel placements
transputer.n (...placed channels...)

Figure 2.2 Program Structure in TDS.

the BOO3 board has some links which are hardwired, providing no access to them.
These channels need not be placed in the configuration.

Inside each SC we should create a fold with the most used definitions and
declarations (see Appendix B). Similarly, the library fold (see Appendix C) should

24

-.‘.-.'. --“ -----
“w

S T T R A YG A :.'5‘.\. N

2N o & A A_*_"xA.g & A S A A S AE..

contain some often needed routines such as I/O routines and other utilities. Our
suggestion is that all useful routines should be included in this fold, as they are created.
The approach we have taken is to make them filed folds in such a way that whenever
you make a new program, all you have to do is create two new folds and attach those
files to them.
The sequence of steps to attach these files in our program is the following:

Make sure you have these files in vour working directory.

Open a fold inside the program vou are working on.

Name this fold with the name of the file vou want o attach.

File this fold by pressing PF3 on the VT-100 terminal.

A A

If you have some limitation in memory or if vou are not going to use all the
routines and definitions that are in there, vou should unfile those folds in order
to not interfere with the original contents and proceed with the desired
modifications. This step as we can see is an optional step and is just carried out
for memory savings and readability purposes.

As depicted in Figure 2.2, the third fold inside the SC PROC is the terminal
driver, which is crucial if we are using screen outputs or keyboard inputs. [t defines
hardware memory locations which represent uart (universal asynchronous receiver-
transmitter) registers, such as mode register, status regis.. . command register, etc....
All of these are defined as offsets to the peripheral base add.ess which is #80040000.
Its basic functions are to reset the uart which we are going to work with,4 and to
define the baud rate for communications between the processor and the monitor. The
first one is accomplished by the procedure reset.uart and since it takes a while for the
uart to become ready, a built-in delav is provided inside this procedure.

The terminal driver is alwavs ready either to receive a character tvped at the
kevboard or send something to the screen. If vou check the code it is clear that both
tasks are just performed after the uart receives a tx.ready or a rx.ready in the status
register. Furthermore, if the uart does not receive either flag within 5.12 seconds, the
uart is considered to have failed and the terminal driver is exited without further notice!
The reason [am teiling vou this is because we had some intermittent problems in the
very beginning of our research. which were very nasty to isolate, and ended up being a
problem in the uart.

%We have two uarts, the uart A is connected to the terminal and uart B to the
host computer.

25

RN

. € af

P
L5 % %

~ LI A
Al Y

- e
O
Lt

NS Y
N

ChNN MY

» NS

.)'&'~"l’l‘.«'r

-
g

S a0

P AP A

[t is also worth mentioning that unlike OPS, where we must send the “end of
buffer” ascii code at the end of the message we are going to output to the screen, in
TDS we don't have to.

The terminal driver must be placed in PAR or PRI PAR with the user process in
order to work properly. The choice of either one construct is not always clear, and it is
intimately related with performance, but the unwary use of it may bring up subtle
points when dealing with complex programs with nested PARs and PRI PARs, so that
the suggested approach is to make your entire program with no PRI constructs and
just after it has been proved correct, vou should assign the priorities where needed.

In the PROC s0 called “user.n”, we have a standard structure like anyv other
programming language such as Pascal, PL/I, etc... where we have a declarations part. a
bunch of procedures which mav be nested 4t any level and finally the main body of our
outer PROC user.n. The onlv main difference is that we should make the channel
placements inside this procedure, attaching the sottware channels to the hardware links
of the particular transputer, to which that process is going to be downloaded. Of
course, these placements must be in accordance with the configuration.

As one may notice we have put A, B, C, O, E, F, G and H as channel
parameters for the SCs, but rather than calling them generically as we did, we could
just as well have put the actual channel’s names as parameters. In doing so, we
wouldn’t have to make their placements inside the PROC user.n, since they were going

to be directly related to the order specified in the configuration.

C. RECOMMENDED SEQUENCE WHEN DEVELOPING APPLICATIONS

In this Section we will present a suggested sequence of steps when building
applications, which in our understanding provides the best results mainly when dealing
with medium to large programs. During this and the next few Sections we will be
dealing with the same basic program in order to give you a better global idea of all the
steps involved.

For the time being assume that the requirements definition and the functional
specification phases are compieted and the architectural design i1s underway with ali the
modules and interfaces already defined.

At this point since all the main modules with their interfaces are already
specified, we can have a good idea of how many processors could we use to map our
application, as well as which modules could be placed in different processors.

26

”

Y e N (e ~ .“‘ I .,‘.- e e e T T e
PN S A N A \.‘A.'CL _m{a...r ":a." “r '.A.m S T m et e e

g

The experimental network will be as depicted in Figure 2.3 where we have 17 S
transputers divided into 4 clusters with 4 transputers each, and one root transputer. ::
The main purpose of this program will be to allow the novice OCCAM programmer to o4
understand the structure of a TDS program, as well as how to configure a network of d
transputers. ::

In this program the root transputer will be running the so called “hostproc”, :

{ which basically receives a character typed on the keyboard and broadcasts it to four

transputers, one in each cluster. Upon receiving the character, these transputers which .

e
will be running the process “route”, will route the character to each of the transputers :
left in that cluster. Finally, all the recipient transputers will echo back the same ;:
character to the root transputer, so that at the end of the program we will have 12 -
characters printed on the screen. ::

The next phase in the traditional software engineering life cycle is the module

L}

design, where all the interfaces between modules should be already defined. The module
design is concerned with internal features of the module like algorithms, data
structures, etc.... In OCCAM terms, the main goal of the module design should be to by
implement each module as an SC PROC, where all the communication between
modules must be done via channels.

Ny Y

»

.{l".’t
y °y ‘s fr v S

PR

] Once we are ready to start developing our modules, we can either use the OPS or
the TDS. This choice is not very clear, but seems to us that the OPS provides a nice .

-
v

timesharing environment for the early stages of the design, since we could have many '.\
users developing and testing their programs concurrently, under the VAX/VMS
operating system.)
Once all the module design teams have their programs logically correct and A
running under OPS, they should be integrated as dictated by the previous architectural -“:_
design, but still under the OPS, where all the interfaces between modules could be '_
checked and validated against typical inputs. As one can see up to this point, no '.o
transputer hardware was necessary, and the reason we are emphasizing this is because
if we had chosen the TDS instead. we would certainly have had a bottleneck problem K
in the usage of the BOOI board, since it allows just one user at a time. Another main 3
reason in using OPS lies in the fact that in doing so, we could use the powerful ®
debugging tools running under the VMS operating system. \
The next step is a controversial one, where we transform an OPS program into a
one-transputer TDS program; it will be entirely covered in the next Section. Although :.':

27

'».‘u__\~\ ‘- P Yy

"y

e | e,

Figure 2.3 A Network with four Clusters.

28

2 21" 4 $. % % 22 RN, o

L s o o e

.

AR L A Y SRRy

it looks like a redundant step, I can assure to you that it is not; many bugs can be
inserted into the program just by changing global definitions, changing library routines,
inserting the now required terminal driver and mainly when trying to use the unique
TDS constructs such as BYTE.SLICE.INPUT, WORD.SLICE.OUTPLUT, etc... instead
of the standard OCCAM channels i/o operations, which are much less efficient (2 to S
times) than the previous built-in procedures, as fully documented in the Reference 9.
Of course this last change need not be done if you don’t have any sort of time
constraints, otherwise they are crucial, since the differences in time are enormous.

[f for anvthing else, this step should be carried out in OPS, just because we have
much better debugging capability than when running in many processors, and keep in
mind that any multiprocessor program adds some new potential sources of errors,
which are not always easily identified!

Finally we should map this one-transputer program onto a n-transputer program.
where this “n” is dictated bv the number of modules (SC PROCs) we have, which can
be parallelized, and of course by the availability of processors. This conversion process
will be described in Section E.

As one can realize, this methodology will not help as far as real time debugging
goes, but it will at least provide an effective way to achieve static logical correctness of
the program.

D. CONVERTING OPS INTO ONE-TRANSPUTER TDS PROGRAM

According to our recommended sequence for developing applications, there will a
point in time when vou have developed vour program under OPS and want to run it in
a single transputer. In these cases vou should proceed by checking all the global
definitions to see if they are still applicable to a TDS program. for exumple, the
channel Screen in OPS must be placed at “1” and the channel Keyboard at “2”, but in
TDS this cannot be done, since “1” and "2” will correspond respectively to linklout and
link2out addresses. Actually, in TDS the Screen and Kevboard are standard channels
which communicate with the termunal driver routine and they don't need to be placed.
Those are the basic differences between the global definitions for OPS and lor TDS,
but for further comparison refer to Appendices A and B, where we present both files. [t
1s important to notice that these global_def.ops, global_def.tds, library.ops and the
library.tds files are not required by OCCAM, they constitute just another way of

structuring a program, and making it easier to read and maintain.

. N ‘.'r ‘Jr'vr\'-

.'-.(~ . .i_‘_-.. - "_. - .

% “o Nt e

AL S

Wmmvv ha S8 Ata AV BB i, AR Bt At 00 AFe Rte I S e

g
)

Now if we look at Figures 2.4 and 2.5 we can see very easily all the steps
involved in converting the OPS program.5 First, as already suggested in the previous
paragraph, we should change all the global definitions, as well as the library routines
by the TDS equivalents. Second, you should include the terminal driver routine, which
is used just in TDS. and place it in parallel with the main user process which was
running under OPS. Third, change the PROGRAM fold which is embracing the whole
OPS program by an SC fold, otherwise we won't be able to instantiate it in the
configuration part.

Finally, vou have to do the configuration part, and since we are talking about a
program to be run In just one transputer, the configuration hecomes extremely simpie,
where we have onlv the Processor number, followed by the name of the outermost SC
PROC, with no channel parameters, since no external communication is going to take
place. As vou may have noticed, we inserted an additional fold of tvpe PROGRAM
embracing the SC and the configuration. This is not necessary, it oniyv ailows to
compile and configure at the same time, otherwise vou will have to apply the "compile
utility” in both folds separately.

Once vour program is successfully compiled in TDS and it is running properly,
vou could then trv one more refinement step in order to speed up vour program, and
that is by using the unique TDS constructs like BYTE.SLICE.INPUT,
WORD.SLICE.OUTPUT, etc ... instead of the standard OCCAM channels 10

operations like “chan ?” and “chan !”. When vou are done, compile and run it again.

E. MAPPING FROM ONE TO MANY TRANSPUTERS

Although we recommend to perform the previous step in everv program, we
understand that the experienced programmer may skip that step for small or 2ven
medium programs, but when dealing with more complex programs with intensive
communications between processes, it is strongly advised to run it first in one
transputer, where vou have more debugging capabilities and once it 1s proven to be
logically correct and with no deadlocks. we should map it onto more transputers.

he basic steps 0 accomplish this mapping are the toilowing:
I. Remove the outermost SC PROC.

Find those SC PROCs which have exactly the same code, differing just by the
name and merge them into just one SC PROC with a common name.

[

SFor convenience we have marked with an asterisk all the changed lines in the
converted TDS program presented in Figure 2.5.

30

Byt
¥
o
.. PROGRAM echo.all p
.+» PROC echo.all a
...g ?Lgbal_def.ops
cen ibrary.ops ‘
... SC PRO hgstproc (CHAN hostinO,hostinl hostin2,hostin3, ~
hostoutO hostoutl, hostout2, hostout3) 3
SC PROC RouteQ0 (CHAN charin,charout,routetol,routeto2 o
routeto3,echofroml,echofrom2,echofrom3} "o
SC PROC RoutelO (CHAN charin,charout,routetol,routeto2 kY,
routeto3,echofroml,echofrom2, echofrom3} Ly
SC PROC Route20 (CHAN charin,charout,routetol,routeto?2 R
routeto3,echofroml,echofrom2,echofrom3} <
.+ SC PROC Route30 (CHAN charin,charout,routetol,routeto2 ’
routeto3,echofroml,echofrom2,echofrom3) o=
SC PROC echocharQl (CHAN charin,charout e
SC PROC echocharQ2 (CHAN charin,charout .
SC PROC echochar03 (CHAN charin,charout N
SC PROC echocharll (CHAN charin,charout -
... SC PROC echocharl2 (CHAN charin,charout .
«++ SC PROC echocharl3 (CHAN charin,charout h
... SC PROC echochar2l (CHAN charin,charout -
SC PROC echochar22 (CHAN charin,charout N
SC PROC echochar23 (CHAN charin,charout R
SC PROC echochar3l (CHAN charin,charout ..
'SC PROC echochar32 (CHAN charin,charout "
SC PROC echochar33 (CHAN charin,charout j
main program_echoall)
CHAN pipe{32]: -
PAR ‘ Y
hestoroc (Bipefe] sissfa] pipefs] miesfe), =
route00 (pgpe % ﬁgpe[g égpe[1,'1pg[1},)
pipell 1,plpe£ 1.plpe{ 0?,plpe{ 2]) o
routel0 (pipe %;jplpe[l4?lp¢[Sléﬁlpg[71é]) S
: ipe ,pipe ipe ipe
route20 (gige Sl pgpg[il, ige 2{5, ige%z l, b:
pipe (251 pipe[2607 pige[24 bipe2d]) N
route30 (pipe[7],pipe(6],pipe[27], 1pe?2 , >
. : ? : 2
pipe 31}, ,pipe(26 glpe[8] ,pipe(30]) o
echochar0l (pipe[9],pipe(1
echocharll (pipe{l5]|,pipe[14] -
echochar2l (pipe[21],pipe]|20]
echochar3l (pipe[27],pipe|26
echochar02 (pipe[ll},pipe[10]
echocharl2 (pipe({l7],pipe[l6] e
echochar22 (pipe{23],pipe|22] -
echochar32 (pipe[29},pipe|28] -t
echochar03 (pipe|13],pipe[12] @
echocharl3 (pipe[19],pipe[18] A
echochar23 (pipe[25],pipe|24] .
| echochar33 (pipe|31],pipe(30] -
! -
Figure 2.4 OPS program. X
'-:1
3. The terminal driver which was in parallel with all the SCs, must now be placed ?ﬁ:j
inside the SC PROC that will run in the root transputer. :;:
~
o
‘.
:_\
31 N
o
S
@
)
-

’

.
»

~

- Te - - ---n-_u ..d""" -
SO ARG R S -

N

LT . VEEE T " R R Y VY R e

UV AN UNUTUY Y

Xt A %

... PROGRAM echo.all
.. SC PROC echo.all
...F global_def.tds

..F library.
C PRO

tds

ees SC
5C

hostproc (CHAN hostinO,hostinl, hostin2,hostin3,

hostoutQ,hostoutl, hostout2,hostout3)

PROC RouteOO (CHAN charin,charout,routetol,routeto?2

routeto3,echofroml,echofrom2,echofrom3

PROC RoutelQ (CHAN charin,charout,routetol,routeto2

routeto3,echofroml,echofrom2,echofrom3

routeto3,echofroml,echofrom2,echofrom3

PROC Route30 (CHAN charin,charout,routetol, routeteo2

PROC Route20 (CHAN charin,charout,routetol,routetozS

routeto3,echofroml,echofrom2,echofrom3

SC PROC
SC PROC
SC PROC
SC PROC
SC PROC
SC PRCC
SC PROC
SC PROC
SC PROC
SC PROC
SC PROC
SC PROC

main program echoal

echocharo0l
echochar02
echochar03
echocharll
echocharl2
echocharl3
echochar2l
echochar22
echochar23
echochar3l
echochar32
echochar33

CHAN pipe[32]:
PAR T T

terminal.driver

hostproc (pipe
route00 (pgpe

ipe

CHAN
CHAN

charin,charout
charin,charout
charin,charout
charin,charout
charin,charout
charin,charout
charin,charout
charin,charout
charin,charout
charin,charout
charin,charout
charin,charout

Keyboard,Screen, port,baud)

pipe

2] ,pipe{4],pipe([6
3],§i§?£s ,Sigfizls

. confi

" "PROCESSGR 0

echo.

ipe
routel0 (gipe
pipe
route20 (pipe
pipe
route30 (pipe
glpe
echochar0

echocharll
echochar2l
echochar3l
echochar02
echocharl2
echochar2?2
echochar32
echochar03
echocharl3
echochar23
echochari3
ration

all

WIN N (W e

|
ié Pipe[2d])

4

The global_def.tds and library.tds files should now be placed inside each of the

Figure 2.5 Converting to TDS.

SC PROCs which are going to be downloaded in different transputers.

32

O A N AR A’ - e AN - A AR -~ e W WO T e Sl aba gia ghe- gy oy plbar ¢ - -y
-
o
o,
o’
5. Change the configuration to run the program in multiple transputers. This step ‘-
will be covered in full detail in the next Section, so that for the time being we ;ﬁ
will limit ourselves to write down the header of the fold. ’
X
The Step 2 deserves some additional explanation, and that is because when we (
are trying to map and run a multiprocessor program in just one processor, the only]
way to simulate very closely the structure of such a program is by making copies of all :f
the procedures that are going to be ultimately downloaded in different processors, .'.'
name them differently, and finally run them in parallel in the uniprocessor svstem.
However, when making the final mapping onto more than one transputer, this
redundancy is no longer needed, and it should be eliminated, in other words. ail SCs .
containing the same code should be merged into just one, and at loading time the]
loader will take care of sending one copy for each processor, according to the
configuration. Although this last step is not mandatery, we strongly recommend :t. ::
because in doing so vou will be reducing substantiaily the code size to de downioaded iy
to the transputer network, increasing the readability of the program as well. ¥
R
~
. -
.. PROGRAM echoall | 3
-
«++. SC PROC hostproc (CHAN hostinO,hostinl,hostin2, hostin3, : T
hostoutQ, hostoutl hostout2 hostout3) | ‘
.+« SC PROC Route (CHAN charin,charout,routetol, routeto2, [g
routeto3,echofroml,echofrom2,echofrom3) ; -
.. SC PROC echochar (CHAN charin,charout) E p
.. configuration f -
o
Figure 2.6 The Previous Program Mapped onto manyv Transputers. =
®
N
F. CONFIGURING A NETWORK OF TRANSPUTERS -
Let's start by asking ourscives what is a1 contiguration? Whv is it needed ! Weil, R,
the configuration is the way we have to specify which process is going to run in which o
processor and also to map the interprocessor channels onto the hardware processor 7.
links. This is accomplished by using some OCCAM]I extensions like PLACED PAR, o
PROCESSOR number, PLACE channell AT address and CHAN channel AT address. j:
. J
33 o

YA A XA

PN A

« it

._e
atu®

T N Y

4
“ e

o 7 o 38 s

/-"-"J‘-(J‘)I'

a4 AT .3&\.’\ _j,.}"

The code for any processor must be contained in a single SC PROC and the
processor number can be any valid integer, which is just a logical identifier of that
processor. However, the first processor to be declared must be always the root
transputer, in other words, the processor connected to the host computer, which 1s the
one responsible for bootstrapping and loading the code in the entire network.

Each of the SC PROCs may be instantiated on any number of processors in the
network, although it is exported from the host to the root just once. Further copies will
be provided and sent by the root transputer to the others in the network.

We have two wavs of attaching software channels to hardware links, one is at the
program levei and uses the CHAN AT statement, and the second 1s with the PLACE
AT statement which is used at the configuration level. The first one is optional, but if
we don't use it we must declare the channels explicitly as formal parameters to the SC,
and thev will be mapped to the actual parameters, at the time that SC is called or
instantiated at the configuration level. On the other hand, if we decide to use the
CHAN AT statement inside our program. the parameters to the SC PROC can be 1n
any order and can have any name; the only thing that will be checked by the compiler
is the match of the number of formal against the number of actual parameters. If vou
look back in our Figure 2.2 vou will notice that we have used channels A, B, C. D. E.
F, G and H as formal parameters, what suggest to us that we have to use some CHAN
AT statements inside our process “user.n”.

If there is a requirement to connect two links from the same processor, a soft
channel must be used.

A network configuration can be viewed as a PROGRAM consisuing of a
coilection of SC PROCs which are instantiated from inside some PLACED PAR
construct. SCs at thus level must have just CHAN or VALUE tvpes as tormai
parameters. .

Let’'s go now through the configuration of our old program echo.all where all
these steps will be made much clearer for vou. Usually, after deciding how manv
paraliel arocesses vou are zoing to have and how many Drocessors vou are 10ing o
need, the next step is to detine how thev wiil be connected in a very broad sense. So,
let’s suppose we want to run the echo.all program in the network presented in the
Figure 2.3.

Once the previous base steps have been accomplished, we suggest the following
sequence of steps in order to properly configure a network of transputers:

1. Number all the transputers using a structured ordering schema (see Figure 2.7).

34

= g R

e ey

2. Name the channels of the links used® to connect the different transputers. We
suggest the use of an array of channels because it will allow you to make use of
replicators as we will see later (see Figure 2.7).

v 2

3. Place the correct process in each of the transputers in the network (see Figure
2.7).

4. Start making the placements for all the transputers in the network, just by
reading directly from your sketch (see Figure 2.8).

VAN AN

5. Instantiate the procedures such that the number of actual parameters matches
exactly the number of formal parameters in the SC PROC. The order is
irrelevant if we are also making the link placements inside the SC PROC.)

As demonstrated, the configuration is a very simple matter if we follow the
suggested steps, but sometimes when we have more than one processor executing the
same process, it 1s very likely that we will be able to recognize some fixed pattern in
their connectivity, which will allow us to simplify the configuration by using some
PLACED PAR replicators. That is why in the first and second steps we have suggested
to use a structured ordering schema for the transputer number and an array of c
channels for the channel names. Now it is just a matter of finding a fixed pattern
between the channel index, transputer number and its link number. Finally, after some
reasoning, we were able to find an equivalent configuration which is showed in Figure
2.9. A further simplification could be to take out the placements of those hardwired >
links in the BOO3 board, but this will be left as exercise for the reader.

This extra step is more an adormnment than anything else, but it is strongly

recommended when dealing with very large networks, because in doing so we will

[

provide a better picture of our entire network. An experienced OCCAM programmer
just by looking at the configuration, can have a pretty good idea of the connectivity of
the entire network, 1n other words, if it uses a tree structure, a pipeline, a ring, etc....
This feeling will be almost impossible if the processors are declared one at the time.
Two facts are important in this analysis, the first is to realize that no

simplification would be possible if there were no processors running the same process

"."-'. P LAY Sl A

and the second is to understand that this embellishment in the configuration is not
mandatory.

One of the points that we have just stated but didn't cover in detail was the
division of a program in a parallel number of processes. [t is obvious that not every

problem can be partitioned into smaller tasks to be carried out by different processors,

®The channels from the hardwired links in the B0O3 board, do not need to be L]
placed in the configuration part. N

35 :

PRI AT AP

TR AR SRS

Wy W M W WY aMa T aTuu s Te Ta T T =TT n T aT N TR

EQHOCHAR ‘l*
1 o]
_-:‘0 21 3 22 | —
7L 2) gcuocaar
(201 | {(21]
(28]1] |[22] 21 (25 .
' 20 ? 23,
ROUTE (24]° ECHOCHAR
[4] (5] [29]
peHaciaR J*ECHOCHAR l (28] JECHUCHAR
o L ROUTE ;o
3 i.? 15— HOSTPROC (8] B o))
3
[18]] 1[19] (3 100 (7] (30]
2 |, (14
—» 34—’ I;o (2] N 3;0
_i‘tF' (18] ° ROUTE
SCHOCPAR SCHOCHAR ECHOCHAR
ECHOCHAR 18
— (1] {e]
(17)
ROUTE
ECHOCHA " (12 e T
© 03 ® 00
[13]7 [11] [10]
(91} 118]
ECHOCHAR 2
) 02 L of
e O
ECHOCHAR

Figure 2.7 Steps 1, 2 and 3 of a Configuration.

A",

36

.
1
.
(]
.
v
D)
!
<
Lo
.

A

PLACED PAR
PROCESSO
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

R 100
pipe[
pipe
pipe|
pipe
pipe!
pipe
pipe
pipe(

~NoOVUnp WO

AT linkOin
AT linkOout
AT linklin
AT linklout
AT link2in

AT linkZout

hostproc (pipe
pipe

PROCESSO
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

route

PROCESSO
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE
PLACE

route

R 20

pipe(l]
pipe Ol
pipe|l
pipelll

}

AT link3in
AT link3out

ol el g

'B1pe

AT linkOin

AT linkOout
AT linklin
AT linklout

pipe[3] AT link2in

pipe
pipe

(pipe
Plpe

R 10
pipe[3
pipe|2
pipe(l
pipe(l7
pipe[14
pipe(15
pipe|l8
pipe(l9

plpe{
pipe

‘Detl;
'3

[l
1

Q

PROCESSOR 32

PLACE
PLACE

ipe(29
glge[za

| i
¥
41

}

AT link2out
link3in
AT link3out

plpe[Og pipe(

i pipe(8]

AT linkOin

AT linkOout
AT linklin
AT linklout
AT link2in
AT link2out
AT link3in
AT link3out

,Plpe(10

’

plpe{
pipe(7?

1 ?1pe[11

P

p19e[21 ?1p&[l51 ?1

pipe|

AT linklin
AT linklout

echochar (pipe(29],pipe[Z28
PROCESSOR 33

PLACE
PLACE

echochar (pipe{31],pipe(30])

ipel31
glge[BO

}

AT link2in
AT link2out

1

pipe(le

ipe| 1

pe{17
pipe(18

I

Lay)

Figure 2.8 The Complete Configuration.

37

FARRAION YV

e

YN e

O

falel

g T s ¥ 4 e

P
AP X J

BET W

5, RARCOOO, XX

PLACED PAR
PROCESSOR 100

PLACE pipe[0] AT linkOin
PLACE pipe[l] AT linkOout
PLACE pipe[2] AT linklin
PLACE pipe{3] AT linklout
PLACE pipe[4] AT link2in
PLACE pipe({5] AT linkZout
PLACE pipe[6) AT link3in
PLACE pipe[7] AT link3out

rosteree (giea(o] Bigeld) B 2tne]y

PLACED PAR j = [0 FOR 4]

1 PROCESSOR'IO*

PLACE pipe{(2*j)+1] AT linkOin
PLACE pipe 2*3 AT linkOout
PLACE pipe[l10+(6*j)] AT linklin
PLACE pipe(ll+ 6*§ AT linklout

PLACE pipe[8+(6*3)] AT link2in
PLACE pipe[9+(6%3)] AT link2out
PLACE pipe 12+(6*3 } AT link3in
PLACE pipe[13+(6~3,] AT link3out
route (pipef(2*j)+1
pipe 11+§6*]
pipe{10+(6%*]
PLACED PAR i = [0 FOR 4]
PROCESSOR (10%i)+1) i
PLACE pipe 9+é6*1) AT link3in
PLACE pipe|[8+(6%i)] AT link3out
echochar (pipe[9+(6*i)],pipe[8+(6*1i)])
PLACED PAR i -OLO FOR 4]

pipe{2*j] plpe 9+(6*3)],
,pgpe[g § g plpef8+<6*3)], {
.pipe{12+ 6*], 5

PROCESSOR i)+2)
PLACE pipe 11+26*1g] AT linklin
PLACE pipe[10+(6*i)] AT linklout

echochar (pipe(11+(6*i)],pipe[10+(6*1i)])

PLACED PAR 1 = [0 FOR 4] !
PROCESSOR (10%1)+3 5
PLACE pipe ld+\b*‘§] AT link2in '
PLACE pipe[12+(6*i

echochar (pipe[13+(6*i)],pipe[l2+(6*i)]) |

AT link2out : :

Figure 2.9 A Simplified Contiguration.

but even if they could, at the rctual state of the art, there is no automatic machine
where we put the entire program as input and the machine would generate an optimal
division of processes to be parallelized.

38

RN

Ty l.,‘tﬁ‘.\‘rﬁ“ﬂ '

e
@ AT

| LS S A e e e St e e A Rt 2Rt h (e it A5 0% St Rl it plte S el bt Ol Vil JUath Nalho Sl e Nalk Salb S ol Badl Sed ek g, Yo tota® el AR Ma i i Bl T el "ol P AR Salh Yol S Al A Ak Sl Nal b, o
' .

‘ As a conclusion we should mention that this whole configuration procedure is a
: very simple one, even for very large and complex systems, and furthermore, the
program can be developed with little or no thought to such matters and then, the

required configuration can be performed after the program logic is proven to be

l" <, f.

correct. It is in this way that large and complex programs can be written while the

LR

actual hardware is still in paper design.

3
.

Therefore, the key idea is that configuration does not affect the logical behavior
of a program. It only enables a program to be arranged so that its performance

requirements are met.

G. CUSTOMIZING YOUR ENVIRONMENT .
When dealing with either OPS or TDS, it is extremely important to create a
friendly environment to work, otherwise you will spend most of your time performing
unnecessary bookkeeping. The main reason for that is because a very big number of
files is created for each complete cycle of a program,7 and since the default filenames
for some of the above operations are pretty vague, it is important to define a more i
strict file naming rule. Some other areas are also affected by the lack of a consistent
naming rule, for example, OPS and TDS programs are quite different but both use the -
OCCAM programming language, so that if we use the traditional file naming rules, we
would end up with some name followed by the extension OCC for both programs,
which is not recommended by obvious reasons. -

For all these reasons we have decided to make up our own file naming rules, :
which are described in Figure 2.10. -

When you apply the utility to get a printout of an OPS or TDS program, all the
folds are opened and they come up as “--", which is exactly identical to a comment in
OCCAMI, so that to avoid confusion we will always use comments with “---" instead
of "--". This way, by looking at the printout, we will be able to very easily differentiate y
a fold from a comment.

Another decision we had to make was regarding the global definitions and the
library routines each program was using. [t was really messy to make a program, :
because we had to pick up routines and definitions from different places, and finally |
put them inside our program, so that we decided to concentrate all in four files so

called global_def.tds, global_def.ops, library.tds and library.ops.

"For a cycle we mean the phases of editing, compiling, linking, extracting and
printing.

g 39

ni

Y

p’:l

¢

B

G

!

Cal

;'.- .TDS — source code of a TDS program

i .OPS — source code of an OPS program

7 .0CC — source code can be either for TDS or OPS

o

| .LST — printable version of a TDS program

.

. .LIS = printable version of a OPS program
.TCD — extracted transputer code (TDS)
.EXE = executable VAX code (GPS)
.0BJ — relocatable VAX code (OPS)
.DSC — descriptor information
.CDE — non extracted transputer code

Figure 2.10 File extensions.

As a final step towards the customization of our environment we have made a
login.com file for the VAX/VMS, where most of the commands are PC-like. See Figure
2.11.

$ adrao:[occamlopssetup
$ 3drao:loccam. tdsdirltdssetup
$ set dir [occam.brasill/version_limit=20
$ prot :== set protection = (owner:r,group:r,world:r)
4 prot :== set prot = (o:rwed,g:re,w:re)
$ d :== dir/size=used/width=(filename=28)/columns=2
$ cd :== set default
4 md :== createsdir
i $ up :== set default [-]
$ ty :== typespage

Figure 2.11 Sample login.com for the VAX/VMS.

40

.... Wt W T TR T R AR T T TR T R e M MR e LR LR L e O ‘\T

-

e W o . e - e B -

a4

Yt tal, fad, Yol ® $a taq Vel Vel (a@ taf Saf tay tal tal Tad Saf o et tatstalafal tat ol caf val S, cafavat,

III. OPERATING SYSTEM DESIGN

A. WHY AN OPERATING SYSTEM ?

As the program complexity increases and more processors are added to the
system, some hardware limitations become more critical and a series of new potential
sources of errors are added to the program. In the transputer case for example, the
four existent output channels will shortlv become a bottleneck due to the increasing
demand in communications, torcing the programmer to change the iogic of his
algorithm to compiy with the actual architecture. Another problem that wil arise is
how to route a message to a non adjacent transputer in the network? How to output to
the Screen from a remote transputer ?

As widely known, the main purpose of any operating system is (0 provide a user
with the ability to use the svstem or a family of svstems, without having to know the
detailed hardware interconnections scheme for each specific system. In the specific case
of the transputer, we have tried to follow this same line of thought, and after some
reasoning, we have reached a very simple model for an operating system for a network
of transputers. In our model, the user will be able to use simple primitives like “send”
and “receive”, to perform the necessary .intercommunication between processors. The
main idea behind this approach is to release the user from the obligation of taking care
of the channels placements, and all other implications, which are derived from this
latter one. [n other words. the user will not need to be concerned in how the message
will get there.

Another feature. which was included in our model, is the capability of sending
two or more messages in parallel, to the same destination transputer, without having to
assign or allocate several hardware links to handle this communication. The final goal
is to make this another abstraction to the user, where the operating svstem would
multpiex the different messages through the same hardware link, and this Joes not
imply inefficiency, since the destination transputer would have to handle the messages
sequentially anvway, afterall it is still a single processor.

Once we have given sufficient reasons to support our claim, that a sort of basic
operating system for a transputer network is vital, let’s go into the other Section where

we will try to cover all the steps of our design, in a very simple and practical way.

41

O A A Oty N e T R i i

N -'.-
h Ta Y

o

oy

|\l.ﬁ\ﬁ'\w1|

-
il ol S

P sl

LS

IO

-

ety -

oYX,

.

LR U WU LN LT L W TR LT,

B. THE DESIGN
Because of the fact that transputers have only local memory, a first approach and
probably the only one at the current state of the art, was to employ a distributed

operating system. An operating system kernel would reside in each node processor to

supervise the user processes running on the node and to handle message trafTic.

g
r

The basic part of our design will be towards building an efficient communications

s

Pl

system, but we will also provide some I/O handling, as well as some utilities like getting

the real time, dumping memory, etc..., from “any transputer” in the network, which will

~ .

Pd

greatly enhance the overall debugging capability of the network, and it will make it

o,
»

[

much easier to program.
One of the first design issues to arise was regarding the protocol to be used in

our communication subsystem, more specifically, what kind of information should be

. .A..-l.'l,.l.'l,

carried by the message header.
3

a
5

The first needed information, and also the most obvious one, is the transputer id

RS

number, which will identifv the destination transputer for a message. This number, as
we will see later, must be in accordance with the routing table, since it will be used as
an index to retrieve information from this table.

The second information to be carried by the header is the message size, since we
have decided to support variable length messages. Here we had a trade off between .
versatility (variable length), and efficiency (fixed length), but in this case we have
chosen to go towards the first one.

The third header component is not an obvious one, which is the channel id
number. It must be,unique8 in the entire system. This channel id will allow the system
to deterrmine within one transputer, which process, and ultimately, which channel is
supposed to receive that message.

Therefore, the header which we will be using throughout our system is four bytes

long and has the format specified in Figure 3.1.

We could have used an integer value, which is also 4 bytes long, to carry all the header
information, but it would take too long to decode it, and besides, the time to output
four bytes with the BYTE.SLICE construct is approximateiv the same as to output an |

integer [Ref. 9]. The difference in decoding time is because with the bj’te structured

8After looking at the implementation, it will become evident that the uniqueness
of the channel id is a very important requirement, since otherwise it may lead to
dubious results. However, it could be eliminated if we have added another field, the
transputer origin, in the header of our protocol.

42

A) Gl ol Gl Gal Vub 5 9085 ol Sk ol A b Rl i

—>
|
MESSAGE TRANSPUTER | CHANNEL BLOCKSIZE
' ID ID |
BYTE 4 BYTE 3 BYTE 2 BYTE 1

Figure 3.1 The Message Header IFormat.

header we just have to fetch the proper field and we are done, while with the integer
header we will have to perform some additional arithmetic operations like divide,
remainder, etc....

In the introductory Section of this Chapter we have discussed some nice features
to have in our system, but how could we implement them, keeping the entire process as
efficient as we can ? Certainly, the answer at a first glance does not appear to be very
simple, since we can have so many different communications paths as depicted in
Figure 3.2. For example, one internal process of transputer #X could be trying to
communicate with another internal process in the same transputer, or this same
process could be willing to talk to a process in transputer #Y, etc... and keep in mind
that in the worst case we could have “any number” of internal processes trying to
communicate between cach other, and “any number” of processes trying to talk to
remote transputers through the four output links, and if that is not bad enough, we
could have the four input links receiving messages either for some process in this
transputer or to be bypassed to some other transputer in the network, and remember
that all this could be happening in parallel, except for the internal processes
communications which would be done in a timcslice fashion, but they could be still
inside a parallel construct.

In the previous paragraph we have said that “anv number” of processes could be
trving to output through the four output links in parallel, and this statement deserves
an additional explanation. In the actual OCCAM implementation this could never be
done, because just four software channels could be attached to the four existent output
hardware links, and therefore we could have at most four links tryving to output at the

same time, but since it was a design decision to keep the interface between the user

43

SAVLOT A a0

-
LS

CHE A SR

.

L
%
v
EZ
3
P‘ .
-
"

e ., A RS L N
)"f ol o J“f\-._ﬂ_" o™ "I.A.'r\" v, {mﬁh't J\.;.

TRANSPUTER

input @——o output

links & links

1USER PRQQESSES—E

Figure 3.2 The Possible Communications Paths.

processes and the hardware channels as abstract as we could, we are going to
implement this extra feature in the Operating System model. For example, suppose we
had a case where the algorithm to be implemented had to send two messages in parallel
to some transputer X. If we had decided to use straight OCCAM, although “logically”
a parallel operation is what we want, in practice the programmer would have to either
change the logic of his algorithm because of the above mentioned physical limitations,
or he would have to assign a second hardware link to that same transputer X, what is
not recommended by obvious reasons. Thus, what we tried to do is to take this
preoccupation from the programmer, by building a sublaver of software which would
allow any number ol output requests to be placed in parallel, even if they have the
same transputer as destination.

Let's make up an example, where some transputer is receiving, in parallel, a
strcam of external values from three distinct transputers. It must calculate their totals
and send them to three parallel processes running in another transputer, using the
remaining link (see Figure 3.3). The current solution to this problem would be to
output the totals in any sequential order with no concern about the order thev became
ready, in other words, the first total in the sequence could happen to be the longest to

calculate and as result we would be blocking the other totals to be sent, delaving the

44

- mum .

B OB B T lhk ot o m BR__EA "

-

ol

entire process. With our new approach, the programmer could maintain the algorithm
logic by sending them all in parallel, and leave to the operating system the task of
multiplexing them through the output link? as they became ready. You should argue
that we could have used the “ALT” construct and get the same final result, and that is
partially true when dealing with non adjacent transputers, but the problem is that it
blocks the other processes until that first one is done, therefore, in the extreme case it
could even block them for ever. On the other hand, with the "PAR"” construct if some
process is taking too long, it will timeout and the scheduler will put the next ready
process to execute.

It i1s aiso worth poinung out, that wvhen we have many ‘ransputers :n the
network, it becomes much more complex, since we won't know whether or not the final
destination is ready to receive that message. so that as a general rule, avoid as much as
vou can to use ume Jependent aigorithms. because theyv are verv likely to deadlock the
svstem.

Another decision we had to make was regarding the usage of muitiple buflers for
storing incoming and outgoing messages, which were not ready to be received or
delivered. What we were trving to achieve with multiple buffering, was to keep the
communication paths free for any messages which might be trving to bypass that
transputer, in order to get to its final destination.

However, after some thoughts and after making some rough implementations, we
have reached the point where in order to maintain multiple buffers, we would have to
lose the parallelism in the input links, because there was no way to get around using
the OCCAM1 programming language, and also the overhead imposed to manage the
buflers pool seemed to be very large. turning it to be less efficient than with just one
buffer. So. in the actual implementation as we will see, anv incoming message to a
transputer will be stored into the Operating Svstem bufler space, tieing up the channel
where it came from, until it is either consumed by some process in that transputer, or
bypassed to some other transputer in the network. On the other hand, if it is an
outgoing message, it will be Xept in the user’s memorv space of the transmitting

transputer, having no effect on the bvpassing traffic.

Have you noticed in Figure 3.3 that we have used an array of channels in our
proposed solution ? The reason for that will become completely clear after reading the
implementation Chapter.

45

A PR B ~

S e e o s N N GRS
" » . ! . . - - 9! ! ! B Vet ¢k S 0 . 3 A

’
'.‘.'r'rfw. P Y B

S

S R

'

DRI I

s 8 2w

SR

Py
l‘ .,

[
4

I-A.F‘l
W

13

:'. "._'."-, AR

rr e Ty
o L

. v
o r’..l »

. s
]
a8,

'9. ’,

RN

c.l
»

@ /7

L A A R B AR

r_. T0 =

PAR :
B 1link0in ? stream0 --- from transputer #2 P
i linklin ? streaml --- from transputer #3 S
!@ link2in ? stream2 -=-- from transputer #4 ‘
... avaluating the 3 totals i
—
PROGRAMMER'S INTENTION
(not allowed)
PAR . -
link3out ! total0 --- to transputer #l1
link3out 1 totall -=-- to transputer #l
! link3out ! total2 --= to transputer #1
. CURRENT SOLUTION |
: \
*l SE?. |
- ink3out ! totall === to transputer #1 !
& link3out ! totall --- to transputer #l
X link3out ! toctal2 --- to transputer #l -
@ »
i OUR PROPOSED SOLUTION ‘1
- - !
b SEQ .
& chan{50] ! total0 --- to transputer #1
o chani{h0] ! totall -=- to transputer #l :
3 chan{70] ! total2 --- to transputer #l |
& ’ [
- ’

Figure 3.3 An OCCAM Limitation.

46

Y

e e e e N LTt aTe e e et e e ey e e e T LT e T e e T e T
A AL A R T RN T L e e e e
PO LA PO NS LR O N .

B N A D N N NN

As you can see, we will have to deal with all kinds of mutual exclusion problems,
since we’ll have in most of the cases many more parallel requests than available
resources (links), but here is where the transputer architecture, as well as the OCCAM
construct “ALTernate”, become very handy. The first one by providing a built-in
process scheduler with two priority levels, a timer and a memory management unit, and
the second by providing a trivial solution to the mutual exclusion problem,!? as we will
sce later in the next Chapter.

Now arises another problem, how could we route an incoming mcssage to the
correct internal process it is supposed to be routed to ? One solution could be to
create in each transputer a channel-id table in memory (see Figure 3.4), wherc we
should have all the channels which communicate with external transputers and one id
number associated with each of these channels. Obviously, the id number would have

to be carried by each message using that specific channel.

CHANNELS ID #
out0 10
. hostinl 31
from.radar 16
in4 27

Figure 3.4 A Sample Channel-id Table.

Another solution that came up after some unsuccessful trials with the channcl-id
table, and also a much better one in our opinion, is the idea of creating an array of

channels, where the id number could be the subscript of the array itself. Sumple, is 1t

not ? Also this decision would make our mutual exclusion handler much simpler, as
vou will sec later in the implementation Chapter.

191 would like to emphasize that as you may recall, this is one of the most
traditional and difficult problems when building opcrating systems.

47

e e e T e ey AT T T T A N e e N T e LT e e
.4‘.'1\.)_ AL T T AT TR SRS R AL PR
e 2w - . A B

',‘!I‘I."‘...-v- o d

L@ el

. .
U

‘,‘,-,q. . .'..'-' ,’.'v..- oo

SRRt I

@ AN

Y SRR [
@ v

P
Y
~ N

Ml A ae A Aok Ak Th R R A D e a el b DA A MAarAte fte ARty T T O O T A A TR RN AT ATV AV VAT AT AL AL T T S e e

o Jiam B Bt anb ol fubd

‘.

<

',

"

! As you can sec, in our abstraction model we will have our Operating System with
L

:: the control of all the hardware link communications and with an user interface that will
t‘ allow the user processes to communicate with the outside world in a very simple way.
J

(]

See Figure 3.5.

TRANSPUTER
NODE

input links OPERATING SYSTEM output linke

USER INTERFACE

USER

PROCESSES

canad

Figure 3.5 User Abstraction.

Therefore, based upon all the previous design decisions, our Operating System
will present the following characteristics:

o [t will support a maximum of 256 transputers in the nctwork, but since we are
using, for convenience, a routing table which supports only 18 entries, it will be
limited to I8 transputers. This can be very ecasily modified, and it will be
explained in the Section covering the routing table.

e It will support a maximum of 256 user channcls active at one time, for
comumunications with other transputers. Actual'v this number will drop to 20
channels as we'll sce in the implementation Chapter.

¢ it has no limit to internal soft channels.
¢ the maximum message length supported is 64 Kbytes.

As we can sce, we have much more than we will really need for most tyvpical
applications, so that our protocol could be very easily modified and optinuzed. In
Chapter VI we will evaluate two versions of the operating system, one with a 4 bvte
header, and the other one with 3 bytes, and we will be able to sec, very clearly, the
effect of the header size in the transfer rate.

48

4 BB S s s AP A4 _"a"a 4 a AAW

B T (e Sy i s A 7ens S SO RIS AP WA AP IO S S o
e . P o —

Let’s now cover more in detail the block components of our Operating Svstem,
as well as all the data and control flow that is going on in there. The major blocks
which compose our Operating System are the [nput Handler, the Screen Handler, the

Output Handler and the Operating System Library Routines as depicted in Figure 3.6.

A
V. AT Sl S R R Y . Y, N

1. Input Handler

The Input Handler i« composed of three basic blocks. the decoder and butler.

There will be one decoder and buffer for each of the four input links and its

e

the operating system buffer.

49

the bypass handler and the software channel input interface.

R o e e T e
R I P I, U, S T T, P iy U

8 to output links
INPUT HANDLER
| LINK o | |pecoo
' 1
s
| surree 111 | 8Y-pass
. req Tor Jink
4 i
- - LINK
__’u HANDLER (—tCSG 28 JiUR ‘g o=k
v‘ RN e QUTPUT
['y e, lor .ok o
f B s LINK
BUFFER —
input links
L1sK
) BANDLER = —
LINK 2 | |oBCODER-
s SOFT SCREEN
surree 11 = L_LIK
CHANNEL HANDLER ze=
LIBRARY
Link a | [oecovestd)
s ROUTINES
BUFFER
NPV S Ot ,l ,| T‘ f‘ to output links
RECEIVE SEND —-j
! uUskl USER UsER USER UsEx
f PROCESS| [PROCESS PRUCES PROCESS| |PRUCESS
] 1 2 ¥]
|
Figure 3.6 Operating System Block Diagram.

function is basically to receive the header, decode it and store the incoming message in

. -‘,\-.f'

R A e s B D o Bt

SRR

FASINYYEY 3k

.."."‘:“.—'.- Ay

0,

v‘;(j
PR

TS

The four bypass handlers will be activated by the respective header decoders,

upon arrival of a message to be bypassed, and then, they will issue a request to the
output handler, using a special soft channel, which will be uniquely identified by the
link from which the message is coming and by the link through ~hich the message is
going to be forwarded, to get to its final destination. Once tae output handler accepts
its request, the bypass handler will release the decoder to go ahead with the
retransmission of the message bv the desired link.

The software channel input interface will be activated just when the message s
for that transputer, and it wiil perform an additional check to see if the message is
addressed to the Screen channel. in which case it will request pernussion o the screen
handler to use its controlled resource. However, in both cases it will send the releasing
order back to the decoder, which will send the message either to the screen, or to the
appropriate channel in some waiting process.

2. Output Handler

This module is responsible for enforcing mutual exclusion in the four output
iinks. Basically it will handle two kinds of messages, the outgoing ones which are
generated by internal processes, and the bypassing ones which are coming from
external sources, and just want to use that transputer, as a retransmission station.

This module is always listening to all possible channels, in such a way that
any output request will be accepted almost immediately. Once a request for output in
some specific link is accepted, that means that the requestor can go ahead with the
transmission through that link, with the guarantee that no collisions will happen. As
vou can see it acts much like an air controller in an airport with four parallel runways,
where besides ensuring mutual exclusion to each of the runwayvs. he will keep them
working n parailel.

3. Screen Handler

The Screen Handler will make sure that just one process from “any transputer”
is holding control of the screen port at one time. Much like the output handler. once a
request is accepted. the requestor is guaranteed :rce usage of the resource with no
interference.

It is important to mention that all the communications between modules and
submodules of our operating system, are done strictly via control flags, with no data

flow until the very end of the process. Another point is that for efliciency purposes, we

are allowing some user accessible routines like “send” and “receive”, to have direct

. ':\
contact with the hardware links, but this will not cause any problems, because their
execution is completely controlled by the operating system modules. e

l.~)

N'l')‘“l..ﬂ
DA NN

LR

A %y
P

{

"

In, & Ty % 7 Y
P a e
P S N P

N A s

e T e B]

.t

e e
P o N
P .
o B

R ‘.-,-—-(‘ﬁ. Pl ri /'-

',.".7.

4

51

AN

.-
-
K
&
-

’l.l

B e R B P T T e e . . ~ RS . -~ c - . R . PR -
D L P TP e T L PR A T AT T et R A Y T PO =T T e T
PP AP A AP n'-,r‘iu'.gJJ.,(gi.ﬂfJ.gi.w,w.m_x_.; RS I

-

SN e oy W TR e TR

1V. OPERATING SYSTEM IMPLEMENTATION

We will discuss in this Chapter all the steps and peculiarities of our

11

implementation, ' as shown by the source code contained in the Appendix D.

A. INPUT HANDLER
The general structure of this module is presented in Figure 4.1, where we can see
that it s all the time listening to the four input links in parallel, and as soon as e

have any incoming message, it will be readily consumed by the proper link.

| PROC input.handler = _ |
i ... variable and constant declarations
: SEQ
... initializing the buffers
PAR
WHILE TRUE)
... listen to link0
WHILE TRUE ,
... listen to linkl
WHILE TRUE)
... listen to link2
WHILE TRUE ‘
..+ listen to link3

Figure 4.1 A General View of the Input Handler.

Hereafter, we recommend vou to follow closely the source code contained in the
Figure 4.2 for a better understanding of the program. After receiving the header with
the BYTE.SLICE.INPUT built-in procedure, we start decoding the block size. You

should ask why to decode the block size right away, even before knowing if that

message is going or not to be bypassed, but as you will notice later, even for bypassing

i rr.» . " ST

the block size wiil be required.

yr v

Once we have stored the message in the buffer of the respective link, which is

maintained by the Operating System, we can proceed with the decoding. The buffer

R .l

size 1s a very important issue, and it should be adjusted to the lengthiest message

HAt this point is highly recommended that the user have already been exposed to
the OCCAMI programmung language and to the Transputer Development System for
the VAX, VMS.

52

expected to travel in the network. This adjustment is carried out by changing the value

of the constant “max.block.size”, located in the very top fold named “Operating System

R e TR TR) |((."‘
LA YL

Global Declarations” (see Appendix D). The reason for that is because the compiler

needs to allocate memory in advance for those buffers, and remember that we have one

*

buffer per input channel. l;
Since we have to spend an appreciable time initializing the buffers,!* and also !;
because we have very strong memory limitations in the BOOl board (64K), it is a wise :
idea to use strictly the necessary buffer size. As we will see in Chapter VII, this buffer
size can be modified by changing a constant value called “max.block.size". j:ﬁ.
If the message is not for this transputer we calculate the output link by looking
up in the routing table for that transputer. This table must be provided for each .
transputer in the network during the configuration phase, it will be covered more in "
detail at the end of this Chapter. But for the time being, it is sufficient to know that its !
indexes are the destination transputers id numbers, and the correspondent values _,
represent the output channels to be used in order to reach those transputérs. '
Therefore, the only valid values in the table are 4, 5, 6 or 7. "
So far we haven't done anything fancy, but now comes the subtle point, [may ::E

say the most important and nice concept of the whole system. As you can see, when :
we send a flag to the output handler, requesting a “green sign” to go ahead with the .
retransmission of the header and the message, the soft channel used to send the flag
must carry the necessary information, in order for the output handler to be able to Z:E
recognize specifically, who is requesting permission, and which output link that request \
is for. The reason it must keep track of information like this is because many different)
users mught be requesting permission to output through the same link. Now comes the 4
question: how can we pass this information to the output handler without having to
send extra bytes of information, and at the same time keeping this switching of
processes as efficient as we can ? The answer we came up with was to use an array of _.
channels whose indexes obeyed a special law of formation.
[f vou take a close look at the code, vou will see that the channel indexes will
carry all the needed information, in other words, who is requesting and what is being ::j
requested. So that, channels 04, 05, 06 and 07 will be used by any mcssage received q?
through link O that wants to be retransmitted by links 4, 5, 6 or 7 respectively. :',p
2

[2Although this is not a required step, it is believed that in not doing it, we may A

have some strange results, due to some problems in the code generation of the

OCCAM 1 compiler for the VAX. o
53

.

T R S T S T e

>

Vv o Ra. JAA e R s et gak A Sada 4 e NPV PNEENWY A S Al W A tadh e e AN S e e S N A

WHILE TRUE

~- listen to linkl

SEQ
-- receiving the headar
BYTE.SLICE.INPUT (linkl,headerl,l,header.size)
~- decoding the block size
block.sizell0] := {(256 * headerl [BYTE 11) + headaerl [BYTE 21)
-=- buffering the message
BYTE.SLICE.INPUT (linkl,buffer.inl,l,block.sizell0])
IF .

-- the message is to be bypassed
headerl - -[BYTE 41 <> this. transputar
SEQ
-- finding the best link to output that message . i
outl := route.table [headerl [BYTE 41]]
-- outputing to the required link

BYTE.SLICE.OUTPUT (chanl 10+outl] headerl,3,1) ~-~ start flag
=== thru chan 14,
IF -=-= 15,16 or 17
outl = 4
SEQ)

BYTE.SLICE.OUTPUT (link4,headerl,l,header.size)
BYTE.SLICE.QUTPUT (link4,buffer.inl,l,block.sizell0]) i
outl = 5 i
SEQ
BYTE.SLICE.QUTPUT (link5,headerl,l,;header.siza}
BYTE.SLICE.QUTPUT (link5,buffar.inl,l,block.sizell0])
outl = 6
SEQ
BYTE.SLICE.OUTPUT (linké,headerl,l,header.size) .
BYTE.SLICE.QUTPUT (linké,buffer.inl,l,block.sizell0])
outl = 7
SEQ
BYTE.SLICE.QUTPUT (1link7,headerl,l,headar.size)
BYTE.SLICE.OQUTPUT (1link7,buffer.inl,l,block.sizell0])
BYTE.SLICE.OUTPUT(chan(10+outll,headarl,3,1) --- end flag

-- the mersage is for this transputer
headerl [BYTE 4] = this.transputer
SEQ
IF f
haaderl [BYTE 3] <> scrn --=- if channel.id <> 40
SEQ
-=- passing the size of the message (block.sizell01])
WORD.SLICE.QUTPUT (chan{headerl [BYTE 31]l,block.sizel,0,1) .
-- passing the message itself
BYTE.SLICE.QUTPUT (chanlheaderl [BYTE 31]1l,buffar.inl,l,
block.sizell01])
TRUE -=-= if charmnel.id = 40 = Screen
SEQ
-- I'm ready
BYTE.SLICE.QUTPUT (screenll],headarl,3,1)
-- output to the screen
send.string (Screen, buffer.inl, 1, block.sizell01])
new.line(l)
-~ I'm done
BYTE.SLICE.OUTPUT (scraeenll]l,headerl,3,1)

Figure 4.2 Input Handler Source Code (Partial).

54

o
Ca el

AR

Likewise, channels 14, 15, 16 and 17 will be related to link 1, channels 24, 25, 26 and
27 to link 2, and finally channels 34, 35, 36 and 37 to link 3. Therefore, these will be
operating system reserved channels and must not be used as user channels. Remember,
there will be no checking for this error, so that if you use these channels inside vour
program it will very likely deadlock the system.

When the retransmission of the message is finished, the requestor sends another
flag to the output handler, to let it know that the output link may be freed or used by
the next in the queue.

On the other hand, if the message is for this transputer, then a further check will
be made to see if the message is to be sent to the screen or to some internal user
process. This check is needed because in our implementation a message sent to the
screen does not require a receiving process in the root transputer, whereas in the other
case it is mandatory. Obviously this step will be carried out just in the root transputer.
and this will be the basic difference between the operating system for the root and for
the other transputers, since the root transputer is the only one to have a port attached
to a terminal.

When the message is for some user process, the block size information is still
needed, since the user process must know what is the length of the message it is about
to receive, otherwise it will have no way to know when to stop receiving. This
additional overhead arises from the fact that we are allowing variable length messages.

The screen channel is defined as channel “scrn” or “40”, and it is another
operating system reserved channel. Once we receive any message addressed to it, we
will need to request permission to the screen handler, as we have done previously with

the output handler, to go ahead and send it to the terminal.

B. OUTPUT HANDLER

Although the Output Handler looks very simple, it performs a very complicated
task which is to assure mutual exclusion for each one of the output links.

As can be seen in Figure 4.3, all the channels with termination 4 will be polled
through the first OCCAM alternate construct (ALT) to check if there is anvone
requesting access to link 4. Similar action is being held for each of the others output
links, with all of this being done in parallel. If there is any request for output through
the hardware links, it will accept the request and will lock up that link until the user
tells him that he is done. The main issue here is that the termunation of the soft

channel id, determines which link that channel wants to use as output.

35

“2"a LA o SR B]

)

TR

)

PUETENE

."&“v. "_ﬁ R ..","-"' 3OS

@ & ._"...‘:‘".’- .

.0’/."‘

@ EAL AL

R

TRART DUV W LR VLY LY “

PROC output.handler =
-- local variable declarations
VAR £flag4 [BYTE 2]:
VAR flag5 [BYTE 2]:
VAR flagb [BYTE 2]:
VAR flag7 BYTE 2]:
PASHILE TRUE
ALT i = EO FOR max.io.channels]
chan [(10*i) +4] ? flag4 [BYTE 0] --- for link4
HILE BgEE.SLICE.INPUT (chan [(10%*i) +4],flag4,0,1)
ALT j = EO FOR max.io.channels] |
chan [(10*3) +5] ? flag5s [BYT 0] --~ for linkS$ *
WHILE %KEE.SLICL.INPUT (chan [(10*%j) +5],flag5,0,1)
ALT k = EO FOR max.io.channels]]
chan [(10*%k) +6] ? flagé6 [BYTE 0] --- for linkeé
WHILE %ggE.SLICE.INPUT {chan [(10*k) +6],£flag6,0,1
ALT 1 = EO FOR max.io.channels] ;
chan

10%1) +7] ? flag? [BYTE --- for link? |

BYTE.SLICE.INPUT (chan (10*1)]+7] flag7,0,1):

—

Figure 4.3 The Qutput Handler.

Although it is not clear at a first glance, due to the way that the replicator ALT
is implemented in OCCAM]I1, we are having a sequential, rather than parallel, output
through the links 4, 5, 6 and 7. Let’s suppose we have somewhere in time the following
channels requesting output in parallel: chan{17], chan{4], chan[35], chan[54], chan{76],
chan[84], chan[107] and chan{66] (see Figure 4.4). We should be able to realize by now

that the first three channels are reserved channels and carry some messages which must

be bypassed through links 7, 4 and 5 respectively. On the other hand, the remaining
five channels are being used by some internal user processes running in that transputer,
which want to use, respectively, links 4, 6, 4, 7 and 6 for output. What we should
expect by looking at our implementation of the output handler (see Figure 4.3), would
be to have the following sequence of transmissions,!? as depicted in the Figure 4.4, but
what actually happened was a sequential transmission in the following order: chan[17],
chan(d], chan[54], chan[84], chan[35], chan[66], chan[76] and finally chan[107] (see
Figure 4.5).

I3We have assumed the same length for all the messages just for convenience.

56

Qe At Lo e R -~ A ek o
* to link 4
CRAN 8¢ | CHAN 84 | CHAN 4 ——
to link &
CHAN 88
to link 6
CHAN 7¢ | CRAN ss
to link 7
CRAN 107 | CHAN 17
el —
time 0

Figure 4.4 The Expected Behaviour.

-

CHAN 84 | CHAN B4

CHAN 4

CHAN 88

CHAN 78

CHAN se

ICHAN 107

CHAN 17

time

to link 4

to link &

to link 8

to link 7

Figure 4.5 The Actual Behaviour.

Based on the previous results, we couldn’t come up with a rcasonablec

explanation, other than some problem in the codc genecration of the OCCAMI
compiler for the VAX;VMS.

57

R T SRR
IRl S AL S

- " S
N N

~

L

~

T - - '.‘ .l "_- ".s '.. '-. '.~ . '.
NTALN AT AT LT

. h Ve P

A It S P]

[S S5 o8 g i o |

If(l'.-'l"’

Y

A gh

r

Lai it auigsdnsain:sgis i bindtago bt d e died et a s b iadea it it gt et pt b it ot et et ed b AR A R g0 S g S LU RARERESERA R S i L B

E
s

After many different trials we have finally got a way to implement it truly in
parallel, and it came up with the odd structure presented in Figure 4.6.

WHILE TRUE
SEQ
goingl
going2
going3
501ng4 :

TRUE
TRUE
TRUE
TRUE

S

WHILE goingl

ALT j = EO FOR max. actual channels]
chan [(10%*j)+4] ? g
SKIPBYTE .SLICE. OUTPUT(C an{ (10*j)+4],flagl,1,1)
goingl := FALSE

WH%%% going2
ALT k = [0 FOR max. actual channels]
chan [(10*k)+5] ? fla g
BYTE.SLICE.OUTPUT (chan[(10%k)+5],flag2,1,1)

SKIP
going2 := FALSE

WHiLE going3

ALT 1 = [O FOR max. actaal channels]
chan [(10*1)+5] ? g
SKIPBYT .SLICE. OUTPUT(C an((10*1)+6],flag3,1,1)

going3 := FALSE
WHILE going4
ALT

ALT m = EO FOR max.actual.channels]
chan [(10*m)+7] ? f1 ag
SKIPBYTE .SLICE. OUTPUT(C an{(10*m)+7],flag4,1,1)
going4 := FALSE

Figure 4.6 The Parallel Solution.

et
Voo

5

However. this was the only wayv we (ound to trick the compiler. With this structure we

k .

had the expected parallel output, in other words, cach link transmitting in parailel,

B

exactly like depicted in Figure 4.4. M

If the reader looks at the final implementation of the Output Handler. he will ';
notice that we have used the first structure, rather than the second one. There are some ‘.
reasons for that, the first one is because we have assumed that it will be very unlikelv
to have such a situation where all the channels will be ready exactly at the same time .

38

and furthermore, we are talking about more than one message ready for each of the
links at the same time, what you should agree that will be quite unusual, but
nevertheless, the most important reason was that after evaluating both structures, we
have ended up with a very big difference in execution time towards the first one, being
more specific, it was in average about 5.6 times faster than the second one ! Actually,
this could be partially expected just by looking at the overhead imposed by the second
structure.

Now you can realize why we have chosen an array of channels, instead of using
generic names for those channels which communicate with external transputers. Stop
and think how difficult and cumbersome it would be, to make an alternate construct
with generic names for their guards.!?

C. SCREEN HANDLER

The idea behind this procedure is exactly the same as the output handler. The
main difference is that it will take care just of one channel, the Screen.

If any other transputer wants to output to the screen, the only thing it must do is
to use the standard “send” routine, which will be covered later in the Section dealing
with the Library Routines, and send any message he wants through the Operating
System reserved channel 40, also defined as “scrn”.

Once this has been done, the message will arrive at the input handler of the root
transputer, and after being decoded it will end up in requesting pe\rmission to the
screen handler to output the message to the screen. If you look carefully in the input
handler code, the software channels screen[0], screen[l], screen[2] and screen[3] are
directly related to messages coming from external sources. If some process in the root
transputer wants to output something to the screen, it will use additional software
channels allocated for it in advance. In the actual implementation we have reserved just
two more screen channels for the root transputer, screen{d] and screen(5], but this is a
matter of just changing the constant “max.screen.channels”, which is located in the
“Operating Svstem Global Declarations” fold, and yvou will be able to have as many as
vou need for your application.

This feature actually improves the capability of the programmer, since he had
prior to this implementation just one possible channel for writing to the screen, and

now we can have as many as we want. Obviously, due to physical limitations (we have

e e e e e el e e
- « " e “. : -

1% Guard is the name given for the channels which are being polled for input by
the alternate construct.

59

O DY
SN AL RN AE RN
XX

\.-

et e '1--\- DRI NG \-'-\—.‘.‘\. _ . .. J' -.

NN AN

-
a_»

et
et N

| P A AP

' ','l","'.l s

ni

o . .'.""'l_ 1,87, (,..

x’ "

_,".r'. X, </

RV R
LI

$aore

ML NS

just one port to the monitor), we will have a sequential output, but in doing so we are
taking from the user the need to worry about this matter, in other words, we are
providing to the user a higher level of abstraction.

However, the beauty of all this about the screen, is that we have now the
possibility of debugging remote transputers, what we didnt’t have before. Now we can
even trace the execution of all our processes running in the entire network, by just

sending a flag to the screen when entering in some procedure and when exiting it. Of

] Rt lecms L U bl BP AR

course it won't be in real time, but at least we will be able to have a precise idea of the

entire flow of control in the network.

If we have the case where four transputers may trv to output to the screen at the

I

same time, we won't know which is which, so that we must send a unique message
which characterizes the transputer it is coming from. This little problem could be very
easily solved by inserting the origin transputer id in the message header, but for
efficiency purposes we decided not to implement it.

Finally, vou mught have already noticed that the output to the screen from
remote transputers, is the only send operation which does not require any other receive
operation in the root transputer. This is a basic point, since for every send operation
ought to have a receive operation for the same channel id somewhere in the network,
otherwise the system will deadlock.

D. THE ROUTING TABLE

The routing table is the instrument that will provide to the operating system, the
necessary information regarding the routing of messages. For example, if we receive a
message which needs to be bypassed, the O.S. based on the destination transputer id
for that message, will look up in the table and see which is the recommended link to
output that message. Once this has been determined, it will follow the standard steps to
input or output a message, as already discussed in previous Sections. Similar action
will be taken for internal messages, which want to be forwarded. ~

In the first implementation of our system, we put the routing table, as well as the

transputer id number, as global variables inside each of the SC PROCs to be

downloaded to the network. Although this way is much simpler to implement, it
presents a very serious limitation, and that happens when we want to load basically the
same SC PROC in several transputers, just differing by its id number and by its routing
table. If that was the case we would have to make as many as needed different SCs,

which is completely wasteful. So, we decided to pass the transputer id number and the

L e . Em o e — ——— BT K -

60

- e - - .- et - R PP S S T S S T S Ut St I
Ca L Te S e e e . P TP R R St et T e R - R -
.....

e AN e e S el
BT A AT N
A A LN S S

"

P L L U AN Tl il B g

routing table as constant parameters in the configuration, but since OCCAMI1 does not
support tables as parameters in the conﬁguration,15 the only solution was to pass value
by value, and if we follow the code we will see a fold in the top of the main program of
the operating system, where the entire routing table is received.

Another point to mention is that our routing table was limited to 18 entries

because we have just 18 transputers in our Lab. But if for some reason we need to
change it, we must carry out the following steps:

1. Change the route.table declaration. which is located in the “Operating Svstem
Global Declarations” fold. in each of the files ROOT_OS.TDS .nd
REMOTE_OS.TDS:

2. Add as many new parameters as needed to each of the SC PROCs to oe
downloaded in the different transputers;

Go to the main body of the PROC “operating.system”, where the routing table
is actuallv received. and assign the new parameters from the previous step. 0
some new indexes of the rouung table. Tryv to be consistent with the
assignments which are already in there;

(9]

4. In the configuration Section, add the new values to the parameter list of each of
the SC PROCs, much like vou did in step 2;

After building the routing table, the user must check it for the non existence of
cycles in jt. If that happens, it will be very likely that some of the messages wiil never
arrive in their final destination, constituting a very difficult problem to isolate. Hence,
it is strongly recommended to perform this test, before using a new routing table.

As the reader can notice, our routing table is nothing else than a graph, so that if
the table is very large, it is recommended to make a little program to detect cvcles in it.
There are many algorithms to detect cycles in a graph, which mught be found in anv
book covering Graphs. However, if the table 1s small. it is quite simpler to check it by
hand.

Suppose we are given a transputer network and a routing table, as specified 1n

e

Figure 4.7. The routing table specify the output links, which must be used by the origin
transputers, when they desire 10 send some message to the destination transputers.
We suggest the tollowing algonthm:
1. Select a column, in other words, a destination transputer;

2. Select an origin transputer, one at a time, and use the output link listed in the
table, to find by looking at the network, where the message will be directed to:

I3t is believed that the new beta release version of OCCAM?2 for the VAX, VMS
will support tables as parameters in the configuration.

6l

N . e ‘\4'_ ~\4_.- RIS T ."..‘;.'-.' DR et -_"_v. ". '.‘. L .
PR P T A A N A A S Y P T L A A IR TR e

AW W W W W, O W W N W Wy W, Wy W, 0 (W, W W W

3. If the transputer obtained from Step 2, is not the destination transputer, jump
back to Step 2 and use the latter one as the new ongin transputer, otherwise,
proceed to Step 4;

4. If you have got a cycle when executing Steps 2 and 3 stop, modify the routing
table, and start all over again, otherwise, jump back to Step | and select
another column, until all columns have been selected.

E. OPERATING SYSTEM LIBRARY ROUTINES

What do these libraries contain ? Is it required to put them in any TDS program?
As explained in Chapter I, the answer is “no”. They are not required to be inside a
file, a fold or whatever. but this was the wav we found most attractive. logical and
easy, to handle the increasing number of new procedures, which were created along our
research. The basic idea is to update the library whenever someone in the research
group, has made a routine which might be useful in the future. However, it will be
useless if it is not very well documented, tested and validated for all expected inputs.

Following this iine of thought we have built basically two iibraries, the first one
for the root transputer, and the second one for remote transputers. Both are completely
described within Appendices D and E, which present the source code for the root and
remote operating systems.

Although they have almost the same routines, they have quite a few differences
in their implementations, as we should expect. However, it is not our intention to
provide a deep explanation of all the code contained in those libraries, but the
interested reader is welcome to go into the source code, which we have tried to
document as well as possible.

The only routines which we will cover in detail are the “send” and “receive”
routines, which are the basic interface to the user, »nd also the most important
procedures to handle communications in the network.

1. The Send Routine i

When we want to send a message to an external transputer, this is the right
procedure to call. It is one of the two only routines. which can access the modules of
the operating svstem directly. It is also. as we will see later, the onlyv rouune that can
output directly to the hardware channels, but obviously under control of the operating
system. The fact that we are allowing a user accessible routine to talk directly with the
hardware output link, may cause the unpleasant feeling that we are not following our
previous abstraction model for our system, but that is not correct, since the operating
system is still with the control over that link. Furthermore, we have tried other wavs

and this was by far the most efficient one.

62

A, ‘2 B 8 B . D o x B A Nl ™

DRSTINATION

NEIIFIFIE
o Rlela sﬁ;
X K RI1O0| e]| = 01% 7
1k 1
24 L G lla|72]e]|e8 "
=% Il2|e|e|7]|=
N Ny
J{e]|les|7]8]| «
ROOT To T1 T2 Ts
® ®
pest Orig
ROOT To T1 T2 Ts
[] [] []
a\‘._/a
ROOT ToO T1 T2 Ts
. o]
r___‘_y
ROOT ToO T1 T2 Ta
[J ®
M
ROOT ToO T1 ﬁ? T8
o 0
ROOT ToO T1 T2 Ts
[] L o e ® []
D 0
ROOT ToO T1 T2 Ts
L
0
o
-]
-]
ROOT To T1-*—T2 8
. o5
o
ROOT ToO T1—4—T32 Ts
® ® De
g::::___.___;:::: \\
ROOT [} T T2 8
° To 81—-0—0 To Y% CYCLES |
D /

ROOT ToO Ti—«—T2 T8
(o]

[- -

Figure 4.7 Checking the Routing Table for Cycles.

63

2 Ay

P2y Sl A L

PR
«

LS \“'I “ %N

SRR
PRI

TR RS
L

S T et
e s
A’ A

LD
2SS

+

’ v.J.

S
PR AT R

It is inside this procedure where the header is constructed, using the
information provided by the user. Another important point to raise is that for any

“send” we must have a “receive” for that same channel id, exactly at the destination
transputer for that send. The only exception is in the case of the channel "40” or
“scrn”, where we don’t need to have a receiving process for the send.
The following parameters must be passed to this procedure:

The channel id which is an integer value multiple of 10, in the range of 40 up to !
240. Remember that channels 0 up to 37 are operating system reserved channels
and cannot be used inside our program. The only reserved channel that we can
make use of, is the "40”, which is uniquely assigned to the Screen channel, but
even though, we cannot use it to send messages o transputers others than the
root;

ST TeT e & WO aww W W WL
[

¢ The destination transputer id is a unique integer value which characterizes a
transputer. The value assigned to it must be inside the range of our routng)
table, in other words, if we have a routing table with 18 entries, the id numbers g
must be between U and 17 including both endpoints:

e The start byte is the position of the first byte in the array that we want to send.
Obviously it cannot be negative. It is important to remember that an array in
OCCAM always start from byte 0, so that “start.byte” equal to 0 is a vald
entry. However, always keep in mind what we really want to send;

bt

¢ The size is the number of bytes to be transmitted. If we want to send the
message from some specific start byte up to the end of the array, we don't have
to make any calculations, just put "0” as the size value. However, in using this
latter approach, it i1s mandatory that in the byte 0 of this array we have its size
information, as it is usually done in OCCAMI1.

send (VALUE chan.id,dest.transp,message[],start.byte,size) | (]

. - | :

USAGE: send (60.15,2.7) ‘ K

send (scrn,l,5,0) .

»

2. The Receive Routine :

This procedure is the second and last routine which have direct contact with :

operating system modules, specifically the Input Handler. It basically receives the ;
message that was sent by the correspondent “send” routine, and since we are allowing

variable message size, it returns to the user, as an output parameter, the length of the By

received message. [t requires the following parameters:

AP A R AR S

RN LR R A .
Y A P R I I I IRV AT AP I N A A I I

e The channel id which is an integer value, multiple of 10, in the range of 50 up
to 240. Much likely the “send”, we cannot use the operating system reserved
channels, and with the “receive”, not even the “scrn” channel or "40" 1s
accepted;

e This parameter is an output parameter of the type array, and contains the
variable to hold the incoming message., which must be declared as an array of
the same type of the original message:

¢ The last parameter is also an output parameter and provides the user with the
length of the message just received. It is included as a parameter, because we
might have a case where the program must take an action based on :he length
of the message, but in most ot the cases it can be disregarded. [t must be
declared as un arrav ot integers with size |,

receive (VALUE channel.id, VAR message|],message.length{])

USAGE: receive (60 message.in.size)

3. The Root Library (ROOT_LIB.TDS)

This Library is intended to be used under the Operating Svstem in the root
transputer. [t contains basically many [, O routines with various formatting capabiiities,
some conversion routines to éhange the representation of some data types, and some
utilities which will help vou in getting the real time inside some process, to calculate
the transfer rate in KBits;sec of some link, to dump parts of memory for debugging
purposes, etc....

Unfortunately, the file system interface with the VAX VMS is not supported
bv the OPS Kernel in OCCAMI, and although we have put some effort in solving this
problem, we didn't have the sutficient time to get a successful result. This issue will be
discussed later in the Section covering follow-on -work, in Chapter VII.

The Appendix D will present the operating svstem for the root transputer, and
in there, vou will be able to {ind the filed fold ROOT_LIB.TDS. with all the routines in
1t

4. The Remote Library (REMOTE_LIB.TDS)

The basic difference between both libraries is that in the first one, we can send
anything directly to the screen, after receiving the consent of the Screen Handler,
whereas in the second, we must always use the procedure “send”, by the special channel

“d40” or "scrn”. Another difference is that in the second library, we don't have the

65

L m e P . L o T U T N R T
. - . - DI S ATt . RN I e N
A" T P 2 O T S L U PP I S S

-

M N B

e - e e . - vy
P JP A . e T I N

N T «, P 2 R R R L N N R R S A R A R T RN S I o . R,

N T R T A g o . T T N R O A T U PP TR W U W W WA, T W U TOP W U Vo TV T TRV TR TR YR

A

ANy

i
N o
A
|

4

e
R

@

AL
ey

. e
“ IR
A R A

ST T
VP PN TW. T

AP N Y.

PROC rem.write.string, simply because the PROC send performs the same function,

with even some more enhancements. Finally, we don't have the PROCs rem.read.string

TS CCKE Y

and rem.read.number, which use the channel Keyboard for input. They were not

implemented because of time constraints in our schedule, but we will give a brief

suggestion for their implementation, in the Section covering “follow-on work”.
Similarly, the REMOTE_OS.TDS which is presented in Appendix E, will
contain the REMOTE_LIB.TDS as a filed fold.

-
B

66

WPSTA &F Rad

Y PGP TN W SO WY

V. EVALUATION OF THE OPERATING SYSTEM

A. INTRODUCTION

This Chapter will be devoted to one of the main issues, when dealing with
programs which are supposed to run under a real time environment, and that is its
“rerformance evaluation”.

The evaluation will be basically software oriented, in the sense that no hardware
measurements will be made. Strictly speaking, it will consist in running a special
program, where all links will be exercised in transmitting messages of different sizes,

and where the parallel operation of the links will be stressed as well.

B. A BRIEF DESCRIPTION OF THE EVALUATION

The configuration on which we are going to evaluate our operating svstem. is
composed of a root transputer directly connected to four others transputers, as
presented in Figure 5.1. The program used for the evaluaticn is 2 modification of the
evaluation program made by Vanni J.F. in his thesis [Ref. 9], where a complete
evaluation of the Transputer and its communications links is presented. We will be
using even the same configuration, in such a way, that our final results for the link
transfer rates, when using the Operating System, can be fully compared with his resuits.

Basically, what his program does is to send successively to one transputer, then
to two, three, four and finally to all transputers in parallel, messages with varying sizes,
starting from 1 byte up to 10000 bytes.'® After receiving these messages the remote
transputers will echo them back, also in a parallel fashion, and the root transputer after
a veryv careful and precise timing process, will time the entire transfer process and
display the transfer rate in KBits/sec.

The structure of this evaluation program can be better understood, if stated as a
sequence of steps, where each complete sequence will be applied. consecutiveiv, for
each message size. We will also present in Figure 5.2, a partial view of the evaluation

program, which will be running in the root transputer.

'6In our modified version of his program, we will be himited to a maximum
message size of 4K, due to BOOl board memory limitations, which are aggravated by
the fact that the Operating System must maintain a series of buffers in addition to the
user declared ones.

67

ST

Tal @
4 4
v Yo e

i
t

9]

(V]

Figure 5.1 The Configuration used in the Evaluation Process.

A flag is sent from the root transputer to transputer #0. When the flag is
accepted 1t will mean that the transputer #0 is ready to receive the actual
message. The end of this step will determine the start of our timing process,
which is carried out in the root transputer. The basic objective of this flag is to
achieve the most accurate syvnchronization between processors as possible, since
it will directly influence the precision of our results:

The actual message is sent, and once it is received by transputer #0, we will
stop timung;

The transfer rate in KBits/sec is calculated and displayed as "1OUT™,

Another flag 1s sent to transputer #0 for the same reasons specified in Step |I.

Once it 1s received by the transputer #0, we will start timing in the root
transputer;

The transputer #0 echoes back the mecssage to the root transputer. Once the
entire message 1s received the timing process is stopped,

The transfer rate is calculated and displayed as "1IN";

68

PL Y

1
P

AN ASSSSOUE T)

. v .
St [

e T P L N .f’(’t’"t’n{t‘.""

~
L

L4
s

o
-t 'x

.

R
.

4 sl a_t_

10.

1.

._.
r

,_..
()

14.

18.

19.

20.

27.

Two flags are sent in parallel to transputers #0 and #l. Upon arrival we start
timing;

The message is sent to both transputers, in parallel, by 2 different links. Upon
arrival of both messages we stop timing;

The transfer rate is calculated and displayed as “20UT";

Two more flags are sent in parallel to transputers #0 and #1. Upon arrival we
start timung;

The messages are echoed back by both transputers. Upon arrival of both
messages in the root transputer, we stop timing;

The transfer rate is calculated and displayed as "2IN”";

Three tlags are sent in parailel to transputers 0, #1 and =2. Upon arnival we
start timing;

The message is sent to the three transputers, in parallel. bv 3 different links.
Upon arrival of the messages we stop timing,;

The transfer rate is caiculated and displaved as "3OUT",

Three more {lags are sent in parallel to transputers 0, #1 and =2. Upon arrival
we start uming;,

The messages are echoed back by the transputers. Upon arrival of all messages
in the root transputer, we stop timing;

The transfer rate is calculated and displayed as "3IN";

Four flags are sent in parallel to transputers #0, #1, #2 and #3. Upon arrival we
start timing;

The message is sent to the four transputers in parallel by 4 different links. Upon
arrival of the messages we stop timing;

The transfer rate is calculated and displayed as "4OUT";

Four more flags are sent in parallel to transputers 0, #1, =2 and =3. Upon
arrival we start uming;

The messages are echoed back by the transputers. Upon arrival of all messages
we stop uming;

The transfer rate is calculated and displayed as "4IN";

Four flags are sent in parallel to transputers =0, #1. %2 and #3. Upon arnival we
start ming;

The message 1s sent to the four transputers, in parallel. by 4 different links. and
they will echo them back immediately. Upon return of the four messages at the
root transputer, we will stop timing. This step is carried out just to check the
performance when all 8§ channels (2 per link), are working in parallel;

The transfer rate is calculated and displayed as "4INOUT";

69

LN |

v

» Ll \J B, a » o ¥ i L}] ‘. ¥ LY - ¢ - », 4+ » - g i - < - O - . - ~ » ~ 0 F) N * »
OO RY St ¢ Lo aiansatata ‘2t st Satat » A 4 su g

PROC transfer =
SEg) .
EgEl = [C FOR nr.of.sizes]

lock.size := sizetable{i]
-- output to one channe
actual.rate := 0 o
SEgEJ = [1 FOR repetition]

Q
send (90,0,"a ",1,1)
! TIME ? time0[0 _
i send (90,0,buffer0,1l,block.size) ‘ ’
' TIME ? timel[0Q] 4 ‘
, transfer.rate(time0{0],timel{0],1 block.size, rate)

. actual.rate := ((actual.rate = (3-1)) + rate}/s
SKIP

o

° |
i °
| -]

|

-- input from one channel
-- output to two channels
-- input from two channels
-- output to three channels -
-- input from three channels ; ¢
-- output to four channels

-- input from four channels

° "
S

!
° 3
-] | -
-- all output and input in parallel | "-
actual.rate := 0 o : L/
| SEg_j = [1 FOR repetition] | N
) ! K
[AR | R
| send (90,0,"a ",1,1) ! N
send (100,1,"a ", 1,1 | o
' send (110,2,"a ",1,1 | X
send (120,3,"a ",1,1)
TIME ? time0[0] o
PAR . :
send(90,0,bufferd,l block.size) ~
send§lOO,l,bufferl,l,block.s;ze -
send(110,2,bufier2, 1 block.size N
: send(120,3,buffer3,1,block.size ‘ y
| recelve(50,buffer0, dummy0 I
. receive (60,bufferl, dummyl ; ®
receive(70,buffer2, dummy?2 h
receive (80 ,buffer3, dummy3) :
TIME 2 timel{0]
transfer.rate(iime0f0], timel{0],. block.size,rate}
actuai.rate := ((actual.rate ~ (3-1), = rate)/; o
| SKIP S
i >
: SKIP ®

Figure 5.2 The Transfer Program in the Root Transputer (Partial).

70

~ Lol Pt AR Sr uin® i e Y SRR o JRe JURLaRL LN S S SN G ERA L L LA R i
Attty oa e A s ol Rl Al G RA gt g e e A AR e IS AR 20N A

%]
IR

i

Although this synchronization procedure through the use of flags is very accurate
when using direct connections of links, that is not quite true when using the Operating
System, and that is because we will be sending the flags, which are our time reference,
through the same Operating System we want to evaluate. This latter uncertainty will
have the effect of slightly decrease the actual measured transfer rate. Nevertheless, this
1s still the best way we found to get a sufficiently accurate result.

Another point to mention, is that there will be a constant called “repetition”,
which specifies the number of times to perform each of the above steps, in order to

calculate an average value for the transfer rates.

C. EXPERIMENTAL RESULTS
1. Evaluating Direct Communications
The tables must be interpreted according to the sequence of steps presented in
Section A of this same Chapter. For example, if we look at Tabies | and 2, we wil] see
that when using one channel to output a message of 2048 bytes, we obtain a transfer
rate of 3423 KBits/sec with the operating syvstem, and a rate of 3658 KBits sec without
it, so that we can say we have lost 6% in the speed for this specific message size. Of

course, this percentage tends to increase as we decrease the message size. In the most

unfavorable situation, we will be trying to output and to receive a message of one byte,
through the 8 channels, in which case we will have speed losses of the order of 96%.
However, it is important to notice that we are comparing the operating system with the
fastest available construct, which is the "BYTE.SLICE” [Ref. 9.

As the reader can notice, the rates for the “I'Ns” are somewhat higher than for
the "OUTs", but as the message size increases, they tend to equalize. We believe that
the reason for that, 1s intimately related with the time spent by the svnchronization
flag, to pass through the operating svstem. and aggravated by the fact that the root
transputer (T414-12) is a slower machine than the remote ones (T414-15). This extra

overhead is expected to present a decreasing relative contribution, as the total transfer

time goes up, which is a direct consequence of the message size. As one can sce, this

last assumption agrees with the fact that they tend to equalize.

P& RN
Akt A

Our next step in the evaluation process was towards the use of high priority

(
for the operating system. As can be seen in Table 3, the rates for the "OUTs" have :-1
presented a modest increase, whereas the “INs” had a very substantial increase. ~

: " " . '

However, as the reader can notice, the rates for “3IN” and "4IN” are not consistent, ~
since we have smaller messages with higher rates than bigger ones, which is not correct. ®
R

il

N

71

.
~'a’a

We have no explanation for such a behavior, but we suppose that it might have some
relation with the fact, that the user process, which has low priority, is accessing the
send and the receive routines, which are high priority operating system routines. This,
somehow, might be causing some sort of problem for the scheduler. However,
although it was not checked, we believe that the data integrity was maintained,
otherwise a deadlock would have occurred.

After analyzing the experimental results, seems to us that the assignment of
high priority to the operating system is the right way to go, despite of the problem
presented in the previous paragraph. However, it is suggested additional investigation,
before using the PRI PAR construct in the operating svstem.

As a summary, we will present in Figure 5.3, a comparison between the best
and the worst cases from Tables 1, 2 and 3.

TABLE 1

TRANSFER RATES WITHOUT THE OPERATING SYSTEM
BETWEEN ADJACENT TRANSPUTERS (KBITS/SEC)

BYTES 10UT 1IN 20UT 2IN 30UuT 3IN 40UT 4IN 4INOUT

1 625 616 250 250 200 198 161 161 98

2 1217 1237 500 500 400 400 325 333 196
4 1531 2130 779 1000 648 788 650 646 384
8 2183 2811 1570 1582 1311 1301 1085 1096 690
16 2758 2924 2101 2222 1948 1919 1702 1694 1255
32 3224 3246 2589 2800 2482 2544 2330 2398 1835
64 3427 3646 3116 3226 2942 3048 2817 2954 2462

128 3543 3644 3332 3497 3265 3390 3187 3320 2945
256 3605 3741 3496 3656 3444 3596 3398 3558 3231

512 3635 3778 3578 3733 3555 3697 3509 3677 3401
! 1024 3650 3754 3627 3741 3604 3712 3575 3702 3512
| 1280 3654 3748 3640 3742 3611 3713 3587 3698 3529
b 2048 3658 3740 3652 3738 3621 3715 3604 3703 3:%49
i 4096 3682 3735 3663 3733 3634 3720 36138 3709 3573

2. Evaluating Multiple Path Communications
So far, we have been evaluating the operating system when working with
adjacent transputers, which is not the most clever way of using it. However, when we
have transputers not directly interconnected, which need to communicate among

themselves, 1t becomes almost a must.

"&.\'\Iittv

.:'.'»l.i_ ', \ln.t.v. PP -'4. .

My W v e W W W T NL W ST R Re T

TABLE 2

; TRANSFER RATES WITH THE OPERATING SYSTEM
’ BETWEEN ADJACENT TRANSPUTERS (KBITS/SEC)

BYTES 1o0UT 1IN 20UT 2IN 30UT 3IN 40UT 4IN 4INOUT

. 1 21 32 9 20 6 14 5 10 4
a 2 43 64 19 41 13 28 10 21 9
’ 4 85 127 38 82 27 57 21 43 13
8 166 248 75 161 54 112 42 35 37
t I 16 319 464 147 308 106 217 33 167 73
[32 588 320 283 565 208 406 163 317 146 !
| 64 1015 1327 526 963 394 727 312 576 238
. 1z8 1596 1938 222 1510 710 1189 577 372 507

2586 2225 2521 1476 2092 1188 1739 996 1480 943

512 2777 2967 2108 2599 1795 2266 1565 2003 1503
1024 3175 3256 2671 2955 2408 2673 2190 2434 2166
1280 3273 3322 2831 3038 2584 2774 2381 2545 2423
2048 3423 3420 3086 3168 28183 2920 2728 2727 2559
4096 2526 3490 3329 3267 3238 3064 3122 23885 2324

TABLE 3

TRANSFER RATES WITH THE OPERATING SYSTEM (HIGH PRI)
BETWEEN ADJACENT TRANSPUTERS (KBITS,SEC)

1
|
|

BYTES 10UT 1IN 20UT 2IN 30UT 3IN 40UT 4IN 4INOUﬁ
i

1 23 71 11 131 7 86 S 65 S
‘ 2 46 140 23 263 15 173 11 129 10
.4 92 270 47 522 31 294 23 256 21
P8 180 506 a3 701 62 588 47 506 43
, 16 342 388 182 1415 123 1142 92 987 34
32 626 1427 345 1998 239 2086 180 1360 i34
r 94 1070 2042 533 2520 448 2498 344 3355 312 |
e 128 15661 2601 1079 2898 798 3260 630 5063 561
| 256 2296 3026 1671 3137 1312 3440 1074 4394 921
‘ 512 2830 3288 2300 3273 1937 3417 1665 3631 1392
1024 3205 3438 2830 3344 2538 3355 2294 3344 2183
1280 3294 3470 2967 3359 2705 3319 2479 3282 2371,
20438 3427 3507 3200 3374 3001 3287 282 3213 2732
4036 3581 3519 3424 3369 3307 3241 31¢96 3121 2874

In this subsection, we are going to evaluate the performance of the operating
system for a multiple path communication, or sometimes referred as multiple hops
communication. The tables 4, 5 and 6 present the transfer rates for 1, 2 and 3

retransmissions, which actually corresponds to 2, 3 and 4 hops, respectivelv. It is

73

B S A AT T N Y e
B L I ST Y AU L T S R ._.{‘.‘ IJJ.JL..[.I

-~

Al

a2 e s utaty P

0001

f...{. -,Fb”n..... LN 4

(SALA8G) AZIS ADVSSAN

L [S |

001

1

T

40] 4

/SLIEXM) ALV HIASNVUL

TddIH SO LSYOM o
JddIH SO 1539 x

‘SO HLIM LS3H s

+
v

S0 LNOHLIM LS¥OM o
=]

‘SO LNOHLIM LS3d
aN3d0d1

004

oore

0082
(0dS/

00S€E

ooz

Yo,

”
L AN

ect Communications.

Figure 5.3 Transfer Rates with Dir

@

74

PRI P

worth mentioning, that the retransmission process is not a strict key switching, where
the “link transputer” would have just to connect its input to the output links directly,
and that is it. Actually, each transputer in order to retransmit a message, should have
to receive and store the entire incoming message into its local memory, and only then,
start the retransmission process. That is basically what is going to be evaluated in this
Section.

The program will be basically the same, with a slightly modification in the
routing table. For the one retransmission case (2 hops), we have forced the transputer
0 to send its messages to the root transputer, via transputer 2. For the 3 hops case. via
transputers 2 and 1, and finally, for the 4 hops case, via transputers 2, | and 3.

However, it is important to mention that the transputers which are going to
be used as “links” are overloaded, since they are still sending their own messages as
well. Hence, this evaluation is going to be a sort of “worst case” evaluation. [t is
velieved, that if the other processors were not executing any processes other than the
operating system, these transfer rates would have presented a substantial increase.
When examining these tables, notice that the “OUTs" are about the same as in Table
2, with adjacents transputers, and that happens because the root transputer is still
sending the messages directly. Therefore, only the "IN” columns will be of interest, in

this step of the evaluation. See in Figure 5.4 a comparison between Tables 4, 5 and 6.

TRANSFER RATES WITH THE OPERATING SYSTEM

i
TABLE 4 {

!
| IN 2 HOPS (KBITS,SEC) |

! BYTES 10UT 1IN 20UT 2IN 30UT 3IN 40UT 4IN 4INOUq
|
I

1 21 17 9 18 6 9 5 8 3

2 43 35 19 37 13 19 10 16 7

4 85 68 38 72 27 38 21 32 14

3 166 132 75 138 53 74 42 63 29

16 319 249 147 258 106 143 83 123 5%

32 588 438 283 454 207 266 164 230 118
4 1013 707 52 72¢ 391 465 313 4.0 224
128 1538 1018 918 1036 707 742 576 670 438
256 2216 1312 1473 1312 1185 1054 995 980 773
512 2769 1531 2103 1510 1793 1336 1564 1276 1163
1024 3158 1672 2671 1633 2406 1539 2194 1458 1357,
1280 3250 1701 2826 1662 2583 1574 2383 1438 13389
2048 3399 1748 3087 1723 2907 1629 2745 1563 1450
4096 3528 1782 3327 1770 3237 1674 3136 1620 1530

75

- v 5y e e

[

)

TABLE §

TRANSFER RATES WITH THE OPERATING SYSTEM
IN 3 HOPS (KBITS/SEC)

BYTES 10UT 1IN 20UT 2IN 30uT 3IN 40UT 4IN 4INOUT

1 21 12 9 11 6 6 5 6 3

2 43 24 19 22 13 13 10 12 7

4 85 47 38 44 27 27 21 24 14
8 166 91 75 85 53 52 42 47 29
16 318 170 147 161 106 99 83 89 57
32 588 300 283 284 207 179 164 162 111
64 1012 484 526 464 392 301 313 277 215

128 1588 594 921 671 707 454 576 426 371
256 2216 890 1472 870 1187 610 996 583 540
512 2766 1035 2104 1020 1791 735 1565 718 681
102¢ 3159 1130 2672 1119 2407 821 2192 807 778
1280 3250 1150 2822 1140 2586 839 2384 825 799
2048 3399 1180 3087 1174 2905 872 2745 854 824
4096 3529 1207 3330 1203 3239 893 3133 877 851

TABLE 6

TRANSFER RATES WITH THE OPERATING SYSTEM
IN 4 HOPS (KBITS.SEC)

BYTES 1loUuT 1IN 20U0T 2IN 30UT 3IN 40UT 4IN 4INOUT

1 21 9 9 9 6 6 5 4 3

2 43 18 19 19 13 13 10 9 6

4 85 36 38 38 27 26 21 18 12

8 166 70 75 72 53 50 42 36 25
16 318 132 147 135 106 95 83 69 49 i
32 588 231 283 235 207 167 164 124 94
64 1011 371 526 377 392 268 313 208 172

128 1586 532 921 539 707 374 576 312 284
256 2216 578 1473 683 1186 469 995 416 392 |
512 2767 787 2103 790 1792 536 1564 499 483 |
1024 31587 855 2669 858 2405 578 2195 556 542 ‘
1280 3248 871 2823 872 2583 586 2383 567 556 |

{

2048 3396 395 3082 895 2909 601 2741 588 578
4096 3529 914 3327 914 3239 612 3134 603 591

D. EFFECT OF THE HEADER SIZE IN THE TRANSFER RATE
One of our main concerns in the design phase of the communications protocol,
was regarding the size of the header. We thought that decreasing the header size by

half, for example, we would almost double the performance, mainly when dealing with

76

.........

(oo @

4 v .

0, T AT

,,..
V P
e

i

pa—y

RO
.
‘o _ala'a s -

Py S 40 P K . .
L -
Chal e aCatiaCial)
A D]
- PR Ot
NOsEnEdl 18 DA AN - N
P i
o Al 2 p)
AR RS ar i
Wt e
' YR A

60001 (saLag) 3zl S :;
e e com—_mo<mum2 o “
D e ..._1 ».....:,:...:... o .”....
-4 u._.,..uw 3 > :
] : w .) - .
AL 5
3 2 .
= 5
~ ~
5 = o »
S 4 =
=3 ~ .
= E)
3 .
PO 25 e
~(SdOH ﬁwmmm 2 & 8 - .
~{SJOH €) LSYOM o = &
~ (SdOH g) JSdd ™ x o O . .
(SJOH 2) Lsiom '+ | B & -
:..Mumom 2) 1S9 ¥ °a g
dOH 1) LSUOM o ~ g e
(dOH 1) IS3d © =
aNan31T . e K 1
w v ,\-.‘
v
L .
=
(S

E A | alehy

small messages. However, as can be seen in Table 7 and Figure 5.5, the effect of the
header size was found to be minimum for all message sizes. In the worst case, we
cannot even notice any difference at all.

The new protocol we will be testing, will have a header which 1s 3 bytes” long,
and the onlv difference from the previous one, is that the message size information wiil

take up one byte, rather than two. Therefore, we will be limited to messages up to 253

bvtes.
TABLE ™

j TRANSFER RATES WITH THE NEW HEADER
i BETWEEN ADJACENT TRANSPUTERS {(KBITS SEC)

BYTES 10UT 1IN 20UT 2IN ouT 3IN 40UT 4IN 4INOUT

1 22 28 =1 32 R w4 S -1 4

2 44 76 3 54 4 2 10 22 3

4 8¢9 151 36 129 27 59 21 45 19

3 174 293 92 251 55 il 43 33 z8
‘ .o 332 540 179 469 L0 225 86 172 76
! 32 613 939 341 321 215 419 170 3320 151
- 64 1051 1486 526 1329 406 748 324 5390 297
| 128 1634 2092 1106 1913 732 1211 597 1081 527
‘ 255 2266 2643 1697 2456 1216 176e3 1026 1813 as7

E. A CONTROVERSIAL PROBLEM

In the first version of our evajuation program, we were using the remote
transputers, which are T41d (1S Mhz), to send the svnchronization tlags to the root
transputer, which s o T414 ¢12.5 MHz . We had chosen this wayv pecause we would he
able to start uming only after the flag had passed through the operating svstem,
resulting in a more accurate uming.

However. after a period of approximately 16 seconds the program was
Jeadlecking i 1 random state. and bear nomund that vithun this tme, ve were ie 1o

perform up to Y cempiete runs ol the same program | Another svmptom swas that
before deadlocking, we could notice a verv Mg increase in the transier rates of the

“INs”.

"We have chosen the new header size to be 3 byvtes long, because in doing so,
we wouldn't have to make major changes in the protocol design.

78

o . - N - P y - Py - = ————
=R A AR LS AR AT AN o : T . EATRCHCARARIN M -.-.. PAP A S .,-. NN I .F..,.-.A....4 B ... AP .p.....--,c., e .-..-..\..u.
)

/

s

1]
4 --
1) _-I
A
. ’,
.inw
*a
‘.
2 (S3LAE) AZIS ADVSSAN
, 0001 001 -
TURVR W G S—" A e bk i i. i i -v\s
o >
1] -— 1
L, = ",
- o4 “
| k.\
3 =
> m .
— .
e T)
3 m o
. - =z =
™ m 2 o ..-
o T = o
. o3 v N
> nM.u ...
= N
; o 3 5
K = -3 o
3 Fo ™ c3 “
o (¥} > 7
—~ — —~ t
k. > - o
) YHA L "
’l & ..m .
- Kl
k. - % y rmu. r...
o .
= aN3DAT o ﬂ o]
3) W
> ~ b=
- E -1\ 1]
3 g s
& o X
., va .
eh "
‘—
'L
L)
-
-

The reasons for such a behavior are still unknown, but we found it would be

useful to pass this information, since it may happen again, in some other experiment.

80

AAIA YA AL e S Gl Gah Sal Gl Gal Gl i i Gl Sod Sud B dntton A4 000 A AN PV o A A A N SN JEE B o Nl aRl oBe i _aRh il ¥

. .-
Uy
0

s

- .
AR

V1. USING THE OPERATING SYSTEM

Y
.

A. INTRODUCTION

This Chapter will introduce the operating system under the user’'s point of view. :

Our system 1s intended to be used in anv transputer network, but when deahing with
verv smail networks, up to 3 transputers. where we can alwavs ‘ind a Jdirect =4
communication path vetween them. it mav be a better choice not using -he vhoie
operaung system, but just its librarv rouunes, mainiv when deaiing with smail messages :
and when efficiency is a critical issue. However, in all other cases we stronglv suggest e
its use, s0 that the Jebugging capability of the aistributed svstem wiil be extremely "
enhanced. as well as the case of programming. .
B. THE REQUIRED PROGRAM STRUCTURE "
The very first steps are basicallv the same for programs with or without the -
operating svstem, and they are: _’
1. Divide the entire program into modules, which can be run in separate ,
processors. Ultimately, these modules will become SCs to be placed in our -
configuration. e

2. Specifv the intertaces between modules (or SCs) and make a sketch of the)
desired configuration. L

Now it 1s time to change a littie bit the structure of the TDS program, as .
presented in Chapter [l ®
The new structure 1s the one presented in Figure 0.1, where some comments are :::
required (or a better understanding. :::
As one can see, what we need to do is to create a tiled fold containing ecither the . .

root or the remote operating svstem source code,!® in each of the SCs. and run the ?
user process in parallel with the operating svstem. As discussed in the previous 5

Chapter, the PR PAR construct should be more cfficient, but we suggest o deveiop

oo a

the enure program -vith no prionty assignments, leaving them for the very end.
Another peculiarity is the new parameters list which must be passed in the
configuration part. The channels parameters have been extensively discussed in

Chapter 11, when we were talking about configuration, so that at this time, we will skip

3They are contained in the files ROOT_OS.TDS and REMOTE_OS.TDS
respectively.

81

I . “v‘......-‘;“-.’ ‘..,";\"."- .ll.l‘u. .

Hf
4
f
'
A
»
o
.’
]
.
3
'
a
L
x,
’l
'
"
P
'
.
f
Fi
(4
<
4
1]
'
{
'
/
'
.
!
'
,
¥
s
.
H
.
Il
f
/
'
»
"’
+ 2]
'
2’

LI
)

b

y

'

o

. SC PROC transputer.root (CHAN A,B,C,D,E,F,G,H,
g VALUE this.transputer,
”

t0,tl,t2,t3, t4,t5,t6,
l t7,t8,t9,t10,tl1, t12
, t13,ti4, t15,¢16,¢17 §)
...F ROOT_OS.TDS !

e PROC user.root

y PAR '
)’ operating.system
- user.root:
L '
|
! | SC PROC transputer.l (CHaAN A,B,C,D,E,F,G,H, ,

. ' VALUE this.transputer,
f t0,tl,t2,t3,t4,t5,t6,
£7,%8,%9,810,%11,%12

£13,c14,£15, 15,17

.F REMOTE_0S.TDS
o PROC user.l I
PAR i
operating.system ;
user.l:

. v -
AP)
atatale v

B
A

SC PROC transputer.2 (CHAM 3,3,C,0,E,F,G,H,
VALUE thls.transguter,
tO,tl,tZ,tJ,t4,t5,t6,

£7,£8,t9,t10,t11,¢t12 ,
£13,ti4) €15, 16, £17) @
..F REMOTE_OS.TDS !
ce PROC user.2 i
PAR |
operating.system :
user.2: . t

Ei
r.
E.
ﬁ

SC PROC transputer.n (CHAN &,B,C,D,E,F,G H,

VALUE this.transputer,
£t0,tl,t2,%3,t4,t5,6,
£7,t8,t9,t10,¢t11,t12
t13,ci4,t15,t16,t17 J

...F REMOTE_O0S.TDS
PROC user.n

, PAR , ‘
| gperatlng.system 1
, iser.n:
’ configuration ;
Y
- §
E Figure 6.1 The Program Structure when using the Operating System
. them. The next parameter to be passed is the transputer id number of that specilic 1
P transputer. This id number will be used as an index in the routing table, to find the 3
outptt link to some message. It must be in the range of 0 to 17, since our actual)
I
implementation of the routing table has only 18 entries. Another suggestion 1s to use)
{ the same number used in the configuration, although it is not mandatory. h
[
» 1
.
82 .
K
.l
Y
A
)
;
¢
!
., \.‘ . r - <. - !

. . . .
s e e e T e e o -
| OV TV U UV PN Y VA U Y T UV VSOV Sene DU 2alal

s an s g db & i

Finally, the last 18 parameters are the routing table itself, which was already
extensively discussed in a previous Section in Chapter [V. The reason we are passing
value by value, is just because OCCAM1 does not support TABLE data type as a
parameter in the configuration. It is believed that this problem has been overcome in
OCCAM2.

The user “cannot” change the names of the parameters this.transputer and t0 up
to t17, since they will be passed as predefined global constants to the Operating
System. These names must be the same for all SCs in the entire program.

C. PROGRAMMING WITH THE OPERATING SYSTEM
The art of programming a distributed system is usuallv done by lead
programmers, with a great knowledge of the architecture they are working with.
However, in our case, with the aid of the operating system, this task will be so much
simpiified, that it will be possible to an applications programmer to carrv out this job.
However, as in any operating system, there are some pecﬁliarities, which must be
known by the user, before he starts to use it, and in our case they are the following:

* Whenever we want to communicate with external transputers we must use the
“send” or “receive” routines. We also maintain in our Librarv a series of [;O
routines and some utilities, which make use of the send routine and must be
used only if we want to have some kind of output to the screen. Therefore,
when using these library routines, we must always have the root transputer as
our final destination. ‘

¢ The user must have a complete knowledge, of the available library routines for
the root, and for a remote transputer as well. We have tried to keep the same
names for the procedures in both libraries, just adding'a “rem” in front of the
original name, if it was to be used in a remote transputer. The onlv exception
was the “write.string”. which was taken out from the remote librarv, since the
“send” routine performs rhe same task, with even some more enhancements.

o [f for some reason, none of the library routines fits our needs, we can still
remotely access the screen, by using the “send” with the special channel "40” or
“scrn”.

* In the actual implementation, the valid channel ids are multiples of 10, starting
irom 30 up to 240.

¢ [tis very important to keep in mund that for every “send” operation, must exist
a matched “receive”, with the same channel id number, and in the same
destination transputer of the “send”.

As one can see, there is no difficulty in programming with the operating system.

In very few words, what needs to be done, is nothing else than a standard uniprocessor

ST SR
- e - - - - A2 - - - -

¢ O L i e |

» L)

L]

t‘f

program, and wherever we need some sort of external communication, either to the
screen, or to any other transputer, we just have to follow the previous rules. As an
example, we will provide in Appendix F, a complete listing of the evaluation program,
which was running under the Operating System. In this program we make very little
use of the various library routines available for remote transputers, but the main idea is

just to show the overall structure of a program running under the Operating System.

D. ADVANTAGES OF THE OPERATING SYSTEM
We will now provide a list, with some of the main benefits, originated from the
use of this operating system:

1) We can have as many as needed “send” or “receive” cails inside a parallei
construct. The various “send” could be even for the same transputer, in which
case, the operating system would take care of multiplexing them, through the
correct output link. The onlv requirement is that all the channe] ids in each of
the send inside a parallel construct must be diflerent.

2) Now we have the capability of debugging remote transputers. For example, we
can send a unique flag to the screen when entering or exiting every procedure
running in some remote transputer, so that we could obtain a complete trace
of our program, and even determine where the system was deadlocking, if that
was the case.

3) Thanks to the remote dump routine we can now dump the entire memory of
any transputer in the network.

4) With the remote [/O routines, we have got formatting capability, so that we
could have, for example, transputer 1 using the upper left part of the screen,
transputer #2 using the middle part, transputer #3 the lower right part, and so
forth.

E. CUSTOMIZING THE OPERATING SYSTEM

This Section describes which set up must be performed. prior to the use of this
operating system with some user program.

There is a fold called “Operating System Global Declarations”, which is the only
place, where the user should perform any sort of change in the O.S. file. However,
there are some declarations and definitions in there, which just need to be modified for
maintenance purposes, done by qualified people.

In most cases, the only definition we will need to change is the “max.block.size”,

which specifies the size, in bytes, of the lengthiest message to be accepted in that

network.

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis is a first effort in developing an Operating System for a distributed
system of transputers. It was built from three basic modules, namely, Input Handler,
Output Handler and Screen Handler. which were implemented under severe efficiency
requirements.

In order to achieve this basic requirement, we had to avoid moving data inside
our systern, as much as we could. A close look at the code will confirm, that most of
the processing time is spent in exchanging flags among the different modules inside the
operating system. Even the [lags were checked for efficiency, in other words, the tvpe

of flag we are using is proved to be the fastest one in that regard. As the reader can

notice, most of the flags and /O are implemented with the BYTE.SLICE construct,
which has been proved to be the fastest construct available in the transputer [Ref. 9].

e :
o a4 N
»

Only in the alternate construct we keep the standard OCCAM [/O channels, because
the "ALT” does not accept the BYTE.SLICE as a valid guard channel.

Now, as'we may recall from Chapter V, the performance figures of the operating

. ,
't .

system, demonstrates that it is quite efficient, mainly for messages bigger than 2048
bytes. At this size for example, we have losses ranging from 8% up to 25%, depending
on the number of channels, which are transmitting and receiving in parallel.!® The last
value was obtained when the 4 channels were transmitting and receiving in parallel.

As far as debugging goes, the operating svstem was very successful, in the sense
that it brought up a new perspective in this field, for a distributed svstem of
transputers. Although we realize that it is still far from being ideal, we should agree
that it provides the user with some capabilities, which were not easily achieved up to

now.

The other mam goal to be achieved by this thesis. is regarding the case ol

programming a distributed system of transputers. Now, anyone would be able to very

quickly, make a program to be run in a very large transputer network.

19This figures can be increased, mainly when dealing with smaller messages, if we
decide to use the operating system in high priority, as depicted in Chapter V (Table 3).

85

"‘ "1 "t/t "-

4
2 2

./

s YR x
RO
1

Y
a,

Returning to the efficiency issue, which is one of the major concerns in real time,
we strongly believe that if the present trend of increasing transmission speed continues,
we will be reaching a point where no more shared memory will be needed, since the
link speeds will be sufficient high, to allow the transmission of the global shared data
to all users of it. Let us put some numbers in this previous assumption. Assuming that
the new family of transputers, the T-800’s, will really support a truly 30 MBits/sec for
the link transmission speed, we will be able to achieve with our basic operating system,
after 4 retransmissions, and also considering the worst case (4INOUT), rates of the
order of 5 MBits/sec, which is a fairly high rate.

Two conclusions can arise from the preliminary results. First, a real time
operating system for a network of transputers is feasible and highlv recommended.
Second, the shared memorv architecture seems to be no longer the preferable
architecture for sharing global data, since we are going to be able to achieve
comparable results, without the disadvantages of having shared memory, like for
example. the system bus censtituting a single point of failure.

Therefore, the transputer appears to be an attractive architecture for

implementing real time applications, where the reliability is a fundamental issue.

B. RECOMMENDED FOLLOW-ON WORK

As stated in Chapter [, this thesis is a first approach to a basic operating system
for a network of transputers, and it is our hope that it serves as a firm foundation for
future and more enhanced implementations.

As this thesis was being developed, many new ideas were brought up, and in this
Section we will try to give some suggestions for future enhancements in the svstem:

e Conversion of all programs used in this thesis to OCCAM?2. It is also
important, to reevaluate this new version of the operating svstem.

* [mplementation of some filer routines which would allow one to open, close,
read and write to VMS files. However, it is believed that OCCAM?2 provides
already this capability.

e Creation of one more reserved channel in the Operating Svstem. which could
handle inputs {rom the kevboard to remote transputers, with a minimum
interference in the process running in the root transputer. The suggestion is to
make up a simple protocol for entering data from the keyboard, for example,
always entering with the destination transputer id# first, followed by a carriage
return, and only then, we should enter with the actual input data. The next step
should be to change the procedure “read”, which is inside the terminal driver,
and insert a check for the transputer id#. If after checking, it was found to be
for a remote transputer, we should send the incoming message directly to the

86

LS

L QLN

A G Ay Sp¥ Wpy Vayey

e s

et A e

remote transputer, through a new reserved channel, in such a way, that the
remote transputer would be able to recognize that the message was carryving
some keyboard input data.

Implementation of an adaptive routing to replace the present one, which is
static. This feature could be further extended, in order to generate a complete
fault tolerant system. OCCAM?2 provides some built-in procedures like
“OutputorFail”, InputorFail” and “Reinitialise”, which might be very helpful in
solving this problem [Ref. 11].

Construction of a more powerful set of Library Routines for the root and
remote transputers, e.g. concatenation,....

Make the Operating System resident in the transputers, in other words. when
we turn the power on, it should be automatically loaded into ail transputers. To
accomplish this step we would need to change the loader program, which
resides in the EPROM of the B0O1 board.

Construction of a more powerful debugger. However, it is not imperative, in
our understanding, to make a debugger with multiprocessor capabiiity, since we
can always map our program to run into a single transputer. In crder to
implement a debugger, we would have to make it resident in the upper part of
memory, and we would also need to have some kind of deassembler, in order to
correctly place the breakpoints inside the code.

Enhancement of the Terminal Driver by changing its [/O handling. Presently. it
is implemented by standard OCCAM [, O channels, so, the idea is to use the
BYTE.SLICE, which is a much faster construct. However, keep in mind in mind
that the single character will have to be handled as a special case, since the
BYTE.SLICE only supports byte arrays.

87

1) ;-_ }_ 2P,

ERP A A';‘l'_ Pl

2P ’

AV

;'

I P

LR R Y

L

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

-~ Channel Declarations
CHAN Parameters AT :

CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN
CHAN

DEF
DEF
DEF
DEF
DEF
DEF
OEF

DEF

DEF
DEF
DEF
DEF
DEF
CEF
DEF
DEF
DEF
DEF
DEF

lobal_def.
onstant De
ort =
aud
nul
bell
tab
1f
cr
esc

sp

Screen
Keyboard
FileinO
Filein

Fi le112
Filein3
Fileind
FileinS
Fileiné
Filein?
FileoutO
Fileoutl
Fileout2
Fileout3
Fileoutd
Fileout5
Fileoutb
Fileout?

linkOout
linklout
link2out
link3out
linkOin
linklin
link2in
link3in

(TS L [T 1}

~Naunbh WO

ClosedOK
CloseFile
EndBuffer
EndFile
EndName

zndPirametears

EndRecord
NextRecord
OpenedOK
OpenForRea
OpenForWri

-

0

V12O ~JO

a
-

d
te

—
’-—A

w
N--IWO

nltlons

AT
AT
aT
AT
AT
AT
aT
AT

INHFHOWOLIOULRWNHFO

L)
=]
N

-- Link Deflnltlons

tring

L T T T | I TR [R T 1}

APPENDIX A
OPS GLOBAL DEFINITIONS (GLOBAL_DEF.OPS)

assigns the RS232 port to the terminal

set baud.rate to 9600 bps
null ascii value

bell ascii value

tab ascii value (every 8 col)
linefeed ascii value

carriage return ascii value
escape ascil value

space ascii value

~-- File Handler Control Va;ues

-1
-2
-3
-4
-5
-3
-7
-9

-10

-11

-12

88

NN L . . e e
RN IENTNENON, RN AN

e e, e

-~ File Handler Error Values

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

FileNameTooLong
InputFileNotOpened
OutputFileNotCreated
InputRecordTooLong
ReadFailed
OutguthcordTooLong
WriteFailed
ClcseFailed

#80000000
#80000001
#80000002
#80000004
#80000008
#80000010Q
#80000020
#80000040

>

[N

il ' Al A8 Aadiuali i e -

APPENDIX B
TDS GLOBAL DEFINITIONS (GLOBAL_DEF.TDS)

-- global_def.tds
-=- Constant Deflnltlons
DE 0

F port = --- assigns the RS232 port to the terminal
DEF baud = ll. --- set baud.rate to 9600 bps
DEF nul =0 : -=-- null ascii value
DEF bell =7 -~- bell ascii value
DEF tab =9 --- tab ascii value (every 38 col)
DEF 1f = 10: === linefeed ascii value
DEF cr = 13: --- carriage return_ascii value
DEF esc = 27: -=-- ascape ascii value
DEF sp = 32: --- space ascii value
-- Channel Declarations
CHAN Screen :

CHAN Keyboard

-- Link Definitions
DEF linkOout :
DEF linklout
DEF link2out
DEF link3out
DEF 1linkOin
DEF linklin
DEF link2in
DEF link3in

Wiauwnuun
NN WO

90

Pt e e e

APPENDIX C
TDS LIBRARY ROUTINES WITHOUT OPERATING SYSTEM

(LIBRARY.TDS)
——m KRR GRS AR R Kk kR KRk ok ek e ek ok ok ok ok ok kA k
~-- Title: LIBRARY.TDS * Version: 1.0 *
~-- Author: MAURICIO DE MENEZES CORDEIRO * Mod: O *
-——— Date: 19/FEB/1987 AR FRAKRKAKKK KA R
--- Programming Language: 0CCAM 1 *
Compiler: IMS D-500 (VAX/7MS) *

Brief Descrlgtlon: This program contains some library*
routines to be used in any TDS program, when not *
using_ tie Cperating System. It must De placed_ in *
parallel with the user process and with the global *
definitions for TDS, =

]
[}
!

L S S b T IR

~-— % Mod #: Date: *
~-- =~ Responsible: =
--=- * Brief Description: :
-——- X

emm RFKRR AR R R A e e e R ek K o ke e ok e e e e e ok ko ke e
.- % Mod %: . Date: *
--- * Responsible: *
--- : Brief Description: :

e RRAKKIKRRARK KA KRR K RARKKAK KK AR KKK KRR KKK IR AR KR A AR KA KKK KKK
-- lo_routines ,
-- PROC dec.to.hex (VALUE integer, VAR strlngL])
R L L L LT L LT T-F Eurrampuigri-Jrfeiys I J s e el Jraen TRR KKK A KKK KAk Kk
--- DESCRIPTION: It converts an integer number from its *
--- decimal representation_into the equivalent hexadecimal *
--- one. It accepts any valid integer. It returns the *
--- hexadecimal number stored in a string of 10 bytes long *
--- where the leading zeros are preserved. *
--- It returns the following format: [size]#000OFFFF *
--- USAGE: dec.to.hex(37182 hex.string) . , *
--- REMARK: The BYTE&O] of the string carries its length *
--- which 1is always 9, therefore it c¢ould be deleted, "but :
x

--- we decided to keep 1it.
- RARKAAAAAKAAAAAARARRRAARAARARRARAARRARRARKAAAARARRARK A KKK AAR

PROC dec.to.hex (VALUZ integer, VAR string []) =
VAR first, order.of.digat, digit :
VAR number :
DEF hex.char = '"0123456739ABCDEF"

SE
%irst := TRUE

string {BYTE O} =9
string [BYTE 1 = '#!
aumber := integer
srder.of.digit := 2
WHILE (aumber > 0) OR (first=TRUE)
oL
8ig;t := number /\ #F
digit := hex.char (BYTE digit +

1
string [BYTE order.of.digit] dlgit
number := number >> 4
order.of.digit := order.of.digit - 1
first := FALSE
SEQ i = [2 FOR (order.of.digit - 1)]
string [BYTE 1] := '0':

-- PROC dec.to.ascii (VALUE integer, VAR string [])

91

o e Y
.......
P *

= A] L SR N

- Tk Tk kT T S R T Tk S Sk e ok e R R T Tk ok ok vk T R 7k R v oA o T ok ok ok ok ok ok s A o 3K ok ok ke ok ok ke o ok ok ok ok ke ok

-~- DESCRIPTION: It converts an integer number from its
--- decimal representation into the equivalent ASCII one. It

=== accepts any valid in
-=- number stcred in a s
=== number 1s right just
--- format: - 3542 ---
-——- 1922937 ---
~-- USAGE: dec.to.ascii(
--- REMARK: The BYTE([O]

--- which is always 11,

--- we decided %o keep 1

*

*
teger number. It returns the ASCII *
tring of 12 bytes lon?, where the *
ified and it has the ollow1ng *
> | ol 1 [[} 14) Il3|l5| 4Il2[®
> [l 1 [} It lllllgllZIllegll3ll7l *
-9873,ascii.string) *
of the string carries its length =
therefore it could be eliminated, but~®
T kad

- RO R R KRR KRN R KRR KRR KRR R TR TR K R 7R R R R T 7k ok ok ok ke ok ok K R ke ok ok ke ok R ok ok kR R

PROC dec.to.asc:i (VALUE
VAR number
VAR orcder.of.iiglit
DEF min.int = - 214748

integer, VAR string []) =

3648
SEQ |
number := integer
order.of.digzt := 11
string [BYTE 5] := 11
2
number = min,int
-- Zaking care of the limit case
Sngtrlng @BYTE 1 = -
strin BYTE 2 = 2!
string [EYTE 3] = '
string LBYTE 4| = '4'
string [(BYTE 5 = 7
string 'SYTE & = '4!
string [BYTE 7 = '8!
string [SYTE 3 = '3
string [BYTE 9& = 16!
string {BYTE 1] = ‘4!
string [BYTE 11 = '8!
TRUE
SE
te
number = 0
SEQ
striry [BYTE 1] := ' !
string (BYTE 11]:= '0Q'
_order.of.digit := 10
sumper < 90
SEC
number := - number
: string [BYTE 1] := '=! b
RUE === n er > 0
_string [BYTE 1} := ' !
-- Duzlding up The actual number
WHILZ numper >
dhi:rgng 3VTE ogder]of.diglt] := ‘number ° 10) +
number := (number 10)
order.of.digit := order.of.digit - 1
SEQ 1 = [2 FOR (order.of.digit - 1)]
string [BYTE i} := ' ':
-- PROC hex.to.dec iVALUE stringil VAR integer OKl
mme KRk ok AR R R Rk ok Tk R K R AR ek ook e ok ok e e e R ke ok ok ok ok ok ek gk ko ok ok

--- DESCRIPTION:

-=-=- a number and conver

It accegts a hexadecimal representation of :

DR
»

~-= expects the byt
--- information o

N
o

-

~ ey, .
LGRS I '-J. - . te e
I S N I N S I P LS W) S) T T L S e o D T g

s it into an integer number, It
e[0] of the string to carry the size *
that '""hex number®. *

92

- '_w A'I '_- -.l o
SRR e T R

LI ST }

~ __--_--._..-‘ B

lol

PR . BAARSTR,

.
-~
®
.'1

R SRR

. . ae pa- - . N - ek Ak e aaas .
- ¥y W W (WL W F g ¥ e T a TnT s TR, A STe e el IS A P R Rt i T St LA A

--- USAGE: hex.to.dec ("#00003785",number valid) *
--- hex.to.dec ("#1452", number,valid) *
--- hex.to.dec ("#19574", number,valid) *
.- ascii.to.dec (hex.string,number valid) :
*
*

e sudndh 28

--- REMARK: Returns a boolean value FALSE in OK if the

--- string is not in the correct format.
——m KoK R T Tk Tk Tk e Tk Tk Tk T Tk e e ok e e e o gk A g Tk sk ok e e gk ok A ok ok e sk ek

"y

PRgg hex.to.dec (VALUE string [], VAR integer, OK) =
%nteger := 0

e T

| -- empty strin
! string [BYTE 0] = 0
! OK := FALSE

-- hex number
string [2YTE 2] <> 0
IF
-- starts with '#'
string [BYTE 1] = '#!
VAR Count

SE

“e \.‘._. TN

Zount := 2
WHILE (Count <= string (BYTE 35)) AND OK
VAR Digit

DEF hexChars = "0123456789ABCIEF"
IF

r
IF Index = [1 FOR hexChars [BYTE 0]]
hexChars [BYTE Index] = string [3YTZ Count]
Digit := Index - 1

~ OK := FALSE o
integer := (integer << 4) + Digit
Count := Count +°1 e

I3
2 s

L

-- otherwise
string (BYTE 1] <> '#!
OK := FALSE N
SKIP : .

-- PROC ascii.to.dec (VALUE string[l, VAR integer
e RARKARKARARKAIRKT 50K K R A K AT KR AR KK KK K
--- DESCRIPTION: It accepts an ascii decimal *
--- representation of a number and converts Lt 1nto an *
--- integer number. It expects the byte{[0] of the string *
--- Lo carry the size information of that "asci: number”. *
--- USAGE: ascii.to.dec ("=-3785", number,valid) :

*

*

x

{ .
Fatad

-——- ascii.to.dec ”+1452“,number,valid§
--- ascii.to.dec ('"19574",number,valid

- ascii.to.dec (string,number,valid))

--- REMARK: Returns a boolean value FALSE in OK if the
--- string is not in the ~orrect format.

- KRR KRR TR T TR KRR TR R KR TR TR AR KR TR R R KRR TR R K Rk KRR ROk A

PROC ascii.to.dec (VALUE string (], VAR integer, OK) =
SE
?nteger := 0
IF

-- empty strin
string ¥BYTE 0] =0 -
OK := FALSE N

-- numb?rYT 0]

string (BYTE <> 0
VAR Sign : ®
VAR Start .

LA

s WY

v‘—".u

M A

LA,

......

et e e
PR R
DL VR }

VAR Length
SEQ
OK := TRUE
IF

-- negative
stgéng [BYTE 1] = '~

ign := - 1
Start := 2
Length := string [BYTE 0] - 1

-- positive
string [BYTE 1] <> !'-!
SEQ" .
1 =
Stg?t := 1]
Length := string [BYTE 0]

-- convert to integer
SE8 Index = [Start FOR Length]
AR Digit :
SEQ
Digit := string [BYTE Index]
IF
('0' <= Digit) aND (Digit <= '9')
integer := (integer * 10) + (Digit - '0')
TRUE
OK := FALSE

integer := integer * Sign
SKIP :

-- PROC write.string iVALUE stringill :
- R T KK R K AR R K K T TR K Kk kR ke kR ok AR e ok e Ak e g Ao ok koK okok ko kok ok ok ok ok ok k ok ok
--- DESCRIPTION: Writes a given string to the screen, in a *
--- byte by byte fashion. It requires that the string which *
--- is a byte array, 6 provides the size of the string in its *
--- byte[0] 6 otherwise we will get unpredictable results. We *
--- are limited to strings up to 255 characters. For blgger *
--- byte arrays or for partial printing use "send.string *
--- USAGE: wrlte.string ("Hello") :
*

=== REMARK: It does nof provide an automatic cr 1f,
e RARARAKARRRRKRAKRRRARKRARRRK KKK RAR KKK RRRARKKARKR KK KKK KAAK

PROC write.string (VALUE string(]) =
]

SE
gEQ i =11 FOR string[BYTE 0]
Screen ! string{BYTE 1]
SKIP:

-- PROC write.string.fast (VALUE strinngl

mme RRRARRAARKARKARRRAR KK AR KR AR KA AR AR KAk e e ok ok Kok K ok ke k ko
-~~~ DESCRIPTION: This procedure works just in TDS ‘and speeds *
~=-=- up things since the whole block is scheduled by CPU just *
--=- cnce, unlikely in the PROC write.string where each byte *
--=- 1s indiv1duallg scheduled. However the terminal driver *
=== routine MUST BE changed prior t2 the use of this routine.=®
--- USAGE: write.string. fast (string) *
e RFRRRRRKRA KA ARKK R AR AR IR AR R K 5 R Aok ek sk ok ok e o e ok ok o e

PROCQwrite.string.fast (VALUE string(])=
SE
BYTE.SLICE.OUTPUT (Screen,string,l,string{sYTE 0]):

== PROC write.number iVALUE integerl
oo ks e gk ok e s sk ok e gk oKk 7 K ok ko ok oK e R ok ok ok e ek o ok ok ok ok ke ok ok ok e ok ok ok ok ok ok ok ok

-==- DESCRIPTION: This PROC outputs a signed integer value to *

W et A AT Aot

94
-
]
-
g
ORI T T N e e T T L P AN AR
AN e Pl g N A W S S R SN 6, .\.‘.\{.‘;.‘;.‘L L, R AR LR, WL Y O OO VO DRPU Y Y S

the screen. It lelt justifies the number, so that if you

need it right justified, use the dec.to.ascii and then
the write.strln? routines.
It uses the following format: 0
--=>
-234193 -==> -234193
1496 ---> 149
USAGE: write.number (integer)
write,number (135

************x******x*'k*l*********************************

PROC write.number(VALUE integer) =

DEF min.int = - 2147482648 :
DEF max.digits = 11 : -
VAR number :

VAR order.of.digit :
VAR digit [BYTE 12]

SEQ

-- PROC read.string

PROC read.string (VAR string(])

numper := integer
order.of.digit := il
IF
number = 0
Screen ! '0Q!
number = min.int

Screen! l_l;I2I;|1I;I4I;I7I;I4I;I8|;|3|;I6I;'4I;ISI

TRUE === number > 0
SKIP
WHILE number > 0

SE
8igit [BYTE order.ofig%git] := (number \ 10) + '0¢

number := (number / _
order.of.digit := order.of.digit - 1

SEQ i = [(order.of.digi;]+ 1) FOR (max.digits-order.of.digit)!
i

creen ! digit [BYT
SKIP:

VAR string

* ok o OF % ok ¥k

*

*k*****k******x*i*********RLll*************************k**
--- DESCRIPTION: Reads any input sequence of characters tvped*®

from the keyboard and stores them in a string, while
echoing them to the screen. The PROC is 2xitéd when 2a
“er' is typed. | .
USAGE: read.strin into.strin

REMARKL: The byte?o

strlng.)

REMARRZ: Although it accepts strings of any length, *he
size contained iIn bvte[0] will be reliable »nl. for
strings up to 255 bvtes.

REMARK3: To enter with strings bigger than 30 buv-es

the 1f ke¥ in the keybcard.

REMARK4: The set up of your cr kev in your isvbcari -«
determine where the cursor will be at tre end’c? - =
routine

*‘k*****';t**'k**'k******************* RARXKKK AR ™ e ™ &w s o -

VAR n, char

char := 'z

n :=
WHILE char <> cr

carries tge cize information of the

ka3

R L 3 P N

TR
. s

®
»
Ay
A
~
-
~
)

Lt

PN

bt d ‘ot e
i aia‘a‘a

T

DESIGN IMPLEMENTATION AND EVALUATION OF AN OPERATING
SYSTER FOR A NETHORK OF TRANSPUTERS(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CR M D CORDEIRg/

- Y ¥V 4 Pl h oy p > F A A A ,uv-.-. v-v-.. ,
=3 e NGOG A AU N I ST, o KPR N AL O £ PP O WA X

o athgtt g’y gthy 8 gty ot

.

ol N ©
S ol S
(=]
3

NEE
i = =

w—m_m_m_uu_r_.....“

2 E

TARDARDS 19644

TR O

MICROCOPY RESOLUTION TEST bHAR1

|

L}
i

AR AR N K TR UX T TN RS IO SO A7 WS WL WS ML, WAL

.

‘et ot

I

- . m e . ~ - —

FE PP

DT Al Sl SN

At K

Lo - -'.‘f..f‘. -f\l"

. }-

SEg
eyboard ? char
Screen ! char
n:=n+1
strlnggBYTE n] := char
Screen !
string[BYTE 0] :=n :

-- PROC read.number (VAR number
- ek sl T e T e Tk e 3k S T K e e T e 7 e 7k 7 3 e e e e e s e T e e e e e e e e e e e 7k e e ke K e Fe e

--- DESCRIPTION This procedure reads a number as entered from*

--- the keybocard. It accepts the following entries format:
--- 4536122 <cr>
--- +3782 <cr>
--- -573485 <cr>

--- USAGE: read.number (into.integer)

--- REMARK1l: Only valid inputs will be echoed to the screen,
=== so if you enter with -34r5&6, the follow1ng will
--- agpear in the screen: -3456 meaning that the number
-3456 was accepted. _

--- REMARK2: This procedure does not check to see if the
-=-- number is blgger than MAXINT or smaller than MININT. If
--- that happens the result will be incorrect.

--- REMARK3: An automatic c¢r, 1f is provided when exiting.
m—— RRARKARAKRAKRKARRRRRRARAREARR AR A A AKKK KA AR RRKAR KA R KRR AR R AR

b b I b 3 b b R I 2 R O

PROC read.number (VAR number) =
VAR ch :
VAR negative
SEQ
ch := 12!
number := 0
ne§at1ve := FALSE
WHILE (ch <> '=') AND (ch <> '+!) aND ((ch < '0') OR (ch > '9'))
Keyboard ? ch

ch = "=
SEQ .
negative := TRUE
Screen ! ch
ch = '+!
Screen ! ch
TRUE
SKIP
WHILE ch <> cr
SE

ILE (ch <> c¢cr) AND ({(ch < '0') OR (ch > '9'))
Keyboard ? ch
number := (number * 10) + (¢h - '0Q')
Screen ! c¢ch
Keyboard ? ch
SKIP
Screen ! 1f
IF

negative
aumber := - number

=~ PROC clear.screen
- e Tk kv v R T A v e sk o e T g e Tk T T e T e T ok e e ke e Ak e v e T e v e vk e e e v sk o e vk e sk vl T e e sk e e e e
DESCRIPTION: It clears the screen and homes the cursor. :

USAGE: clear.screen
- Tk F T e e K Fo e e s e Tk K T Tk Tk e ke e e e ok 7 ke T e e ok e e e ke T e e e vk vk vk v vk vk e e Tk ek ke de %k e ok v e

-

PROC clear.screen =

creen | esc; '['; '2'; 'J! --=- clear screen sequence

96

G - “' .-- L] - .- -‘ *,
LoV s '.1- AR .~“¢, Ll ¢, ALY

ha L2

S NN e AR N S A S A AN N N N '“-r-',\ Y e ST St
- . Ll .

. e

D
\

>
e -8 2 A=

™

1%,

R o
N NN

o,

T AT e TR T et T,
At e e

Screen ! esc; '['; 'H':

-=-= home cursor

-- PROC pos.cursor iVALUE line columnl

e IR I T K e ek AR ok ATk A e ok K A ok ok R K e e ok e ek ke e sk ok e e o e ke ok

--- DESCRIPTION: Positions the cursor in a specified line and*

--- column. We have used the ANSI escape sequence

=== ESC [Line;Column H.

--- USAGE: pos.cursor (8,30) ' *

--- REMARK1l: Valid values for line are 0 up to 24 *

-—- Valid values for column are 0 up_ to 80 *

--- REMARK2: Values out of the above range will cause :
*

* *

-——— unpredictable results.
oo e o s e sk T e ok 7K e ok K 7k 7K 3K 7 K 7 ok R e 7k o T 7 e e ok e e o e 7k ek e e ok e e o Ak e e

PROC pos.cursor (VALUE line
\SI%R X [BYTE 2], y [BYTE 2]:

F
(lége < 10) AND (line >= 0)
% [BYTE o] = 10!
.y [BYTE 1] := line + #30
(line >= 10) AND (line <= 24)

SE% {BYTE 0} éline<103 + #30
Y

column) =

BYTE 1 line\10) + #30
TRUE
SKIP
IF
(cgégmn < 10) AND (column >= 0)
X [BYTE 0] := '0'
X [BYTE 1] := column + #30
(cgéémn >= 10) AND (column <= 80)
X [BYTE O] := écolumn(log + #30
x (BYTE 1 = (column\10) + #30
TRUE
SKIP
Screen ! esc; '[' ; y [BYIE O ; y [BYTE 1 s 't
X [BYTE O ; X (BYTE 1 ; 'H':

-- PROC new,line (VALUE number)

cma FRRAKRARKA KA R KKK KA R KRR KRk T A kR e ek ok ek e ek ke ek ok ke ok
--- DESCRIPTION: It will skip as many lines as specified in *
--- its parameters list. *
--= USAGE: new.line(4) *

--- REMARK: Negative numbers will not give any new lines, *
cma KARAARRARARRARRKAKAKAARAARARAAARAARKRARARAAAKRARXAARARAAAKRKAAKRK Kk AAkK

PRgg new.line (VALUE number) =

gEg i = [0 FOR number]
creen ! c¢cr;lf
SKIP:

-- PROC space iVALUE number
- T 7% Tk T K R KR Sk T T KT R A T kT e T T ke e Tk g ke e ke e e e ke e e e T e e e P vk e Fe T vk Tk e S ke e e vk e ok A

--- DESCRIPTION This procedure provides spaces for formatting*
--- a single line, *
--- USAGE: sgage(&) , . *
--- REMARK: This routine does not Rrovide an automatic 1f *
--- after reachlng the end of the line, *
o TR Aok ok ok o o e kK ek ek ke ok e e ok ok ok sk 6 ke K ok o sk ok o ok ok e ok ok ok ke ok K ok ok

PROC space (VALUE number) =
SEQ :

97

R R P R I I LR I Tt Ut
T ’:‘-‘.-f 'n"' "-'\t-".. '-"'n' "-{'~ \'-'- v -q." PO RS

"-' . \{“-"\.

s

NSARE

WAL P

, .
e N

v

\

-

P Ay

N AN)

a l"\“n . (- -';

. \
000

-

g on-aea- - Sl A AR G AP A A A" g" Al At AL A L B A et \y

SEQ i = [0 FOR number] b
creen ! sp
SKIP:

-- PROC tab iVALUE number '
——— KRk ek ok e e ek e e e e ek sk ok ke ok e ok e e ok ke ke e ok e ok ok e ok ok ok e ok ok

--- DESCRIPTION This procedure provides tabs for formatting a*
--- single line. Each tab is equivalent to 8 spaces if the *
--- terminal is using the default set up.

--- USAGE: tab(6) _ _ ,

--- REMARK: This routine does not provide an automatic 1lf

*
*
--- after reaching the end of the line. *
- 7T T KRR R K K T T T R e e A TR T e T e T e e R e gk e A e e T oKk ke o Tk e e e ok e e e o ok e ke e o e e A vk A e

PRgE tab (VALUE number) =

Eg i = [0 FOR number]
creen ! tab
SKIP:

-- PROC send.string iCHAN outgut VALUE strinng start string.length)
——— TSR ok sk o ok ok R R K K e e K e g g e s e e ok e ok e o ek e ok ko e A R e
<-- DESCRIPTION: This routine sends a string through a *
--- generic channel output. It also allows to specify a start *
--- byte, as well as the length of the string to send. *
--- USAGE: send.string (out.channel,"hello",3,3) *
=== REMARK1l: The above example will actually send the :
*
*

“a s W e

-=-= characters 1,1 and o.

--- REMARK2: It can be used with the channel Screen as well.
-aa KT H K R TR K YT T T T F R T TR K T K e T T K e e e T Tk e e o T e ke o R v ok e e SRt o e v ok e vk K ok o vk Rk

PROC send.string (CHAN output, VALUE string[],start,string.length) =

SE
gEQ index = [start FOR string,length]
sxggtput ! string [BYTE index]

ch W M_m_w_a_ e

-= PROC receive.string (CHAN input, VAR string[],
VALUE start strin .lengthl

mmm KRR R R KRR e A e e ek ek ek e ek o ke ek sk o e ek ok ok ke ok Sk
--- DESCRIPTION: This routine receives a string through a
--- generic channel input. It also allows to sgecxfy he
--- starting byte, as well as the number of bytes to receive
--- from the 1n;om1ng string. . i

--- USAGE: receive.sfring (out.channel,string.in,3,2)

--- REMARK1l: The 3bove example will actually receive 2 bytes

--- from the incoming string, starting at bxte 2.
e RRRAKREKARKKKRRRKRAKARKR R KA KKK R KT KK IR KA K A A A A A KA A o kK

b 2 b 2 3 b b 3B)

P e D)

PROC receive.string (CHAN input, VAR string[],
VAégE start,string.length) =

EQ index = [start FOR string.length]
_K%gput ? string [BYTE lndex?
) :

F,

-- PROC send(VALUE channel.id dest.transg messageLl start.bxte size) ‘
mmm KKK R Ak kKR K e e e A 7k ok ok ok ko e e kK e T e e e e e ok koK ok ok ok ko

-=-=- DESCRIPTION: It is an ogerating system routine, and it
--- is used to communicate between processors. It builds the
-~~~ header of the message to be sent. It has as parameters
-=-- the channel id of the channel which is going to carry on
~=-- the communications, the id of the destination transputer
--- for that message, the start byte and the size of the

--- message to be transmitted. For every send must exist a
--=- receive for that same channel id in the destination

* A A * Gk F A %

98

RN W AU U™

d
Fone B m)

-== transputer.
--- USAGE: send (70,4,message,1,Qi, , ,)
--- REMARK: The user must be familiarized with the Operating

——- s¥stem Structure before using this routine.
e KA AT KK AT TR T T T e T T e e e ke R e 7k Tk T K e e e ke K e ek e e e T Tk e e e e ke e K e e ek

b B B

PROC send (VALUE channel.id,dest.transp,message(],start.byte,size)=
VAR out,message.size, header [BYTE 5]:

SE% :
F .
size <= 0 =--- send from the start.byte all way to the end. .
=== this method is valid Ior messages up to 255 bytes.
--- even for size < 0 it behaves like it was a 0.
Taggssage.51ze := (message[BYTE 0] - start.byte) + 1

message.size := size

header [BYTE 1

message.size<256 --- block.size (# of 256 bytes)
neader [BYTE 2

message.size\256 --- + remainder)
header {BYTE 3 channel.id --- any tenth from 40 up to 240
header [BYTE 4] dest.transp _--- destination transputer

out := route.table [dest.transg],

?gTE.SLICE.OUTPUT (chan(channel.id + out], header,3,1) =-~-- ready flag

out = 4

SE
gYTE.SLICE.OUTPUT élink4,header,l,header.size) _
. BYEE.SLICE.OUTPUT link4,m:ssage,start.byte,message.size)
out =

SE
gYTE.SLICE.OUTPUT glinks,header,l,header.size)
. BYEE.SLICE.OUTPUT link5,message,start.byte,message.size)
out =

SE
8YTE.SLICE.OUTPUT Elinkﬁ,header,l,header.size))
. BY;E.SLICE.OUTPUT link6,message,start.byte message.size)
out =

SE
. gYTE.SLICE.OUTPUT 1link7,header,1,header.size)
BYTE.SLICE.OUTPUT (link7 6message,start.byte, message.size)
BYTE.SLICE.OQUTPUT (chan{channel.id + out], header,3,1): =-- done flag

-=- PROC receive iVALUE channel.id VAR messageLl messa e.length[])
cem ARRAKRRKRARKRAKKHKKR KKK KAAR KK AR KKK IR R KK FKAK KRR K KRR A KKK
--- DESCRIPTION: It is an ogerating system routine, and it *
-=-- is used to communicate between processors. It receives: *
--- the incoming message, and provides as an output parameter *
--- the size of the message just received. The parameter *
--~- channel id must have an exact match with the send *
--- ogeratlon which originated that message. *
USAGE: receive (70,message.in, size) . . *
-=-- REMARK1l: The user must bé familiarized with the Operating *
--- SEstem Structure before using this routine. *
REMARK2: Notice that the message.leng;h output parameter, *
=== must be a unity array of integers, while the message *
=
kel

--= itself must pe declared as an arraz of bztes.
- Te TR R AR Fe A AR A AR T T R T T TR R R T TR T KR T Kok ke ok e e ek sk ok gk gk ke ke ok ke v ok o v e e ke

PROC receive (VALUE channel.id,VAR message[],message.length(])=

SE
SORD.SLICE.INPUT ﬁchan[channel.id ,message.length,o,li
BYTE.SLICE.INPUT (chan{channel.id],message,l,message.length(0]):

-= utilities
-=- PROC tick.to.time iVALUE start stog board.txgel
ek ok e ok sk ok e ok ek T e T e e Kk T e T 7k ok e ok Kk ok Tk e ok Tk K 7 e ok T 7k K e e e ok ke e e sk ok o e e e ok ok ok ok ok

--- DESCRIPTION: It expects the board type which can be : *

99

- - . -
- -

[

1.

L]
e --= board.type
ﬂr - board. type
! === board.type
-=~ Dboard.type
A == board. type
: --- board.type = 4 ----> B004 _)
--- and 2 signed integers regresentln some tick values
~--- obtained b{ an assignment of the fype TIME ? time.var |
--- It then outputs the corrected elapsed time in hours, min,
sec and msec, already taking into account the fact that
--- the timer wraps around when it reaches MAXINT or MININT.
--- USAGE: tickk.to.time (timel,time2,31)) '
--- REMARK: Although it takes care of the wrapping, it won't *
--- keeg track of the number of times you have completed one *
--- full cycle of the timer. In order to solve this problem *
vou should record roughly the start time. For example, in*
--- the VAX/VMS, the full cycle of the timer is 7.2 min, so =

0 -=---> OPS (VAX VMS)

1 -=--=> B001 (T414:12.5 MHz)

2 ---=> B002 _ ,

31----> B003 éT414:15 MHz - high pr;;
32----> B003 (T4l4:1 5MHz ~ low pri

nuwnwnu
b 2 2 2 b b 3 b b b b b 3

AN D
[]
[]
[}

S --- if you get the elapsed time of 5 min 7 sec 320 msec and *
N --=- you have §0t.a rough total time of 12 minutes, then the =~
N --- real total time is'12 min 19 sec 320 msec. *
N m—— KT F e K R KT AR R AR A A K ek Tk e ok ek kK K KK KA e ks e ok ok ok
. PROC tick.to.time (VALUE start, stop, board.type) =
. -- constant definitions
y DEF vaxX.sec =10000000 : -=-- hundreds of nsec/second
b DEF vax.mili = 10000 : == hundreds of nsec/milisecond
i DEF b00Ol.sec = 625000 : --- # of 1.5 usec/second
! DEF b00l.mili = 625 : --- # of 1.6 usec/milisecond
K, DEF b0Q03h.sec = 1000000 --- # of usec/second
DEF b0O03h.mili = 1000 == # of usec/milisecond
. DEF b003l.sec = 15625 : --- # of 64 usec/second
. DEF b0031l.mili = 16 : --- # of 64 usec/milisecend
. DEF max.number.of.ticks = 2147483648 : --- maximum integer (2**31)
: VAR elapsed.tick :
, VAR factorl, factor2 :
L~ VAR msec, tot.sec, sec, min, hr :
SE
. F
) bogéd.type =0 , --- VAX VMS
- actorl := vax.secC
: factor2 := vax.mili
bogEd.type =1 -=-- BQO1l
' actorl := p00l.sec
< factor2 := b00l.mili
‘
board.type = 2 -=-=- BOO2Z,
‘ SKIP --- not implemented
bogéd.type = 31 --- B003 in high priority
X factorl := bQ03h.sec
: factor2 := b003h.mili
\ bogéd.type = 32 --- B003 in low priority
factorl := b003l.sec
factor2 := b0031l.mili
; board.type = 4 --- BOO4
f SKIP --- not implemented
géapsed.tick := stop - start
elapsed.tick < 0 _
elapsed.tick := elapsed.tick + max.number.of.ticks
100

E Ao v e e e
. . L] 0 A 3 ' 4

te e 1t Aat Bat Bal it 28 goé @t . 22,000 2.8 aul et U ‘a e Ata Ao £'0 gta gt 2t P Y UL TUN vy Ak aloral, ad Aty - “alo alo-Rbo Al *

TRUE ‘

SKIP
tot.sec := elapsed.tick/factorl !
hr := tot.sec/3600
min := (tot.sec\3600)/60
sec 1= tot.secéso K
msec := (elapsed.tick\factorl)/factor2 L

-- output time to screen
write.number (hr
write.string (" hr ")
write.number (min)
write.string (" min ")
write.number(sec)
write.string (" sec ")
write.number(msec) :
write.string (" msec")

--_PROC dump iVALUE begin,address, count) .

- RRETK A KT TR R A KT TR K ke ke e S e e e e ek ok e e e e sk e gk e e sk sk e
--~ DESCRIPTION: This procedure dumps the memory starting at *
-=- the given '"begin.address'. The value for the *
--- "begin.address" can be either in hex or decimal. ,

=== The count value determiaes how many words in memory will
=== be retrieved.

'il'll‘\

-=--~ USAGE: a) dump (#80003540,100)
-—- b) dump (1024,48)
-—— c) dump (-5113,1024)

--- the retrieval is done by words, not bytes!!!

=== REMARK2: If count is not a multiple of 4 it will use the
-=- closest upper multiple.

--- REMARK3: Negatives or zero values for count although

-=-- accepted, will give Xou no output,
e R TR e T e K T 7 e e e T e e e e e e e e e Kk T K e e e e e v e o ¢ e e e e e ok e e e ke e e e ok e

*
:
*
*
*
~-~ REMARKl: When specifying the count value remember that :
*
*
*
*
*
PROC dump (VALUE begin.address, count) =
VAR word.read:
VAR hex.value £9], hex.addr[9]: y
VAR address, align, times: .

SEQ
times := 0 -
new.line(l))
address := begin.address
- alignlngda given address

?%ign : ress\4
align <0 ' .
address := address - align »
TRUE
SKIP

WHILE times <= count y
SE 3

write.strin "address ") :
dec.to.hex ?a dress hex.addr)

write.string Ehex.addr) 3
writg.strlng ooy) .
SEg i = [0 FOR 4]
E N
ETWORD (word.read, address) N
dec.to.hex (word.read,hex.value) N
write.string (hex.value) N
space .
times := times + 1
SKIP
101

Yy

- -

e
o4 N4 s

address := address + 16
new.line(1l)
SKIP:

-- PROC transfer.rate iVALUE start stog board.txge nr.of.bxtes,VAR rate)
B i L L L L L L T T e o e b g S e e 2
--- DESCRIPTION: It is basically the same routine as *
--- tick.to.time, with the only difference that it returns a *
--- rate value in Kbits/sec instead of a time value. *
--- USAGE: transfer.rate étlmel(t1m¢2,3l,4096,rate) *
--- REMARK: If further intormation is needed, please refer to:

~--=- routine tick.to.time
e R T e ek T R Tk Tk e T T R e e e e e e e e e e e e e sk e e e e e e e e e ke e ok e e e ok ok e ok ok e

PROC transfer.rate (VALUE start,stop,board.type,nr.of.bytes,VAR rate) =
-- constant definitions

DEF vax.sec =10000000 : ~=-- hundreds of nsec/second
DEF b001l.3sec = 825000 : -~- # of 1.6 usec/second
DEF b003h.sec = 1000000 : --- # of usec/second

DEF b003l.sec = 15625 : --=- # of 64 usec/second

DEF max.number.of.ticks = 2147483648 : --- maximum integer (2**31)

-- variable declarations
VAR elapsed.tick :)
VAR factor : -=-- to convert ticks to seconds

SEQ
§%apsed.tick := stop - start

elagsed.tick <0)
eEapsed.tick := elapsed.tick + max.number.of.ticks

TRU
SKIP
:; selection of correct factor iaw the board
: board.type = 0 --- VAX VMS
factor := vax.sec
board.type =1 --- B0OO1
factor := b00l.sec
board.type = 2 -=-= B002
SKIP --- not implemented
board.type = 31 === B003 in high priorit
factogp:= b003h.sec o P Y
board.type = 32 --- BOO3 in low priority
factor := b0031l.sec
board.type = 4 --- BOO4
SKIP --- not implemented

E: rate calculation

4

board.type = 32 o
rate := ((nr.of.bgtes*s *factor)/(elapsed.tick*1000)

TRGE- operation 1s done this way to keep precision ok!
rate := ((nr.of.bgtes*B *(factor/1000))/elapsed.tick .
--- operation 1s done this way in order not to exceed maxint
-=-- on_the numerator.

--- mgl;iplg b{ 8 due to 8 bits per byte .
--=- divide by 1000 to have the tranfer.rate in kbits/sec

SKIP:

-- PROC caglt lize (VAR chlll
e FRTe AR TR e T ok e e ok Tk ¢ 5 Tk ke e e o sk e e o e e o ke e sk ok ke ke ok e ok ke e ok e A ok e e o ek ok

102

A S Yaq - Ca8 va% “al . ad * aaloval. valavat. ‘al ‘at. ab.atatatatal [Py R ‘atocal, at, N . gt gt el \J 0 ¥, atyal, 2t 1, gig 4%

- DESCRIPTION It capitalizes the first character in any
--- string.

~--=- USAGE: ca italize istrlngl
c—- ********* o e e e 7k e e Tk v e e e 56 5k e e e e Tk e e e e e e e e e ke e e e o e Kk o ok e e e e e e

* % ¥

PROC capitalize (VAR ch[]) =
DEF delta =('a' = 'A') :

== A ===> g5
=== a =-==> 97 ASCII values
== 2 ===> 122
SE .
(ch [BYTE 11 <= 'z') AND (ch [BYTE 1] >= 'a') B
ch [BYTE 1] := ch [BYTE 1] - delta *
| TRUE :
i SKIP
!
4
{
)
103 \
»
N R N e S N T TN Y I S e e

Ve gl gg av T\ (PR TP AR T TLF U T PO TLI TR TR UK) A B8 (AN ARV Y RN RN 404" *a fte dia fte £'a Ata At S]

APPENDIX D
THE OPERATING SYSTEM FOR THE ROOT TRANSPUTER

(ROOT_OS.TDS)
mmm ket ek ok e e ek ok e ok ke ok e ek ke e e ok e sk e e ke e ek e o e ok ok ke e
-——- Title: ROOT_0S.TDS * Version: 1.0 *
- Author: MAURICIO DE MENEZES CORDEIRO * Mod: O . %
-~— Date: 21/MAR/1987 Fede KKk ek ke k ek ok ok
--- Programming Language: OCCAM 1 *
--- Compiler: "IMS D~500 (VAX/VMS)

*
Brief Description: This program contains the source *
code for a communications operating system for the *
root processor in_a network of transputers. It must =
be placed in garallel with the user process, :

]
[}
]
b B S B e O 2 S A A 3 g B g

cme KRR IR AR T T A TR KK TR KKK R K e ok T K R R A ok Aok ok ek

-—- Mod #: Date: *
=== Responsible: *
--- Brief Description: *
- - - x
- hARIARKAAIAAKAARAKKRITKKRKTIRAKKAAKATRAKARTRKRAIKKKRX K AT AKAR KK
--- Mod #: Date: *
--- Responsible: ®
--- Brief Description: :

- aa Ferkodk g de sk sk vk ek e sk g o vk e sk s s e e e ok o gk e R e vk ok e e ok ok ke ok R 7 e ok e ok ok o ke ok ok e e ke ke

-- Operating System global declarations

DEF max.block.size =74100:

DEF nr.of.transputers = 17:

DEF header.size = 4:

DEF scrn = 40: --- channel screen

DEF max.io.channels = 25: --= 0 up to 240, in tenths

DEF max.screen.channels = 5:

VAR route.table[18]: , '

VAR flag (BYTE 1]: --- for the library routines

CHAN chan [10 * max.io.channels]: --- Actually it should be :
--=(10*(max.io.channels-1))+8

CHAN screen [max.screen.channels]:

-- global_def,tds
- e FeT T AT e e e T Tk e Tk e sk e Tk e T e Tk e gk e s e T Tk e e sk s s e e ke ek e sk 3k e ok ke e e v ok e e A
~—- At this point we should imbed the filed fold *

--- global def.tds, which is described in Appendix B *
- ***x*****x*************************k******xx**************

-- Operating System Channel Placements
CHAN linkC AT link0Oin :
CHAN linkl AT linklin :
CHAN link2 AT link2in :
CHAN 1ink3 AT link3in :
CHAN link4 AT linkOout:
CHAN link5 AT linklout:
CHAN link6 AT link2out:
CHAN link7 AT link3out:

-- root_lib.tds

-=- 1o_routines

-- PROC dec.to.hex (VALUE integer, VAR stringill

ama KRRKARRARIKKKRARFKAI KK R KRR A A K KA A kKA kAR R ek ok e e e ek ok ok ek
--- DESCRIPTION: It converts an integer number from its *
--- decimal representation_ into the equivalent hexadecimal * L
--- one. It accepts any valid integer. It returns the *

104

£ gad fad Be? a¥ Ba®afa’ dat b’ fat a0a' 88" g’ Sa'gle NaSeia‘ata e atiale aus gih ‘g¥e gud il o) 0o n R B9’ el e 2R Tab a8 vap - plaahe 0 ™ Pa @by ~atat L s

--- hexadecimal number stored in a strln of 10 bytes long * X
1 ~-- where the leading zeros are preserv *
~-=-= It returns the following format: [51ze]#OOOOFFFF *
==~ USAGE: dec.to.hex(37182, hex. strlng) *
--- REMARK: The BYTE&O] of the string carries its length *
--- which is always therefore it could be deleted, but *
=== we decided to k ep i *
AR ARAR AT AR ************************************** *
PROC dec.to.hex (VALUE integer, VAR string []) = "
VAR first, order.of.digit, digit : '
VAR number : !
ggF hex.char = "0123456789ABCDEF" :
21rst := TRUE .
! string [BYTE 0] :=9 :
; string [BYTE 1] := '#!' .
i number := 1nteger .
‘ order.of.digit :=

WHILE (number > 0) OR (£first=TRUE)

SE
glglt := number /\ #F
digit := hex.char [BYTE dlglt +
; string [BYTE order. of digit] :=
t number := number >>
order of.digit := order of.digit - 1
first := FALSE
SEQ 1 = [2 FOR (order of dlglt - 1)]
string (BYTE 1] :=

e o

== PROC dec.to.ascii (VALUE inte VAR string L]l

e KR KK I RKRARR KR KK KK K F KKK e e e el e e e e e o
--- DESCRIPTION: It converts an integer number from its

--- decimal representation into the equivalent ASCII cne. It
--~- accepts any valid integer number, It returns the ASCII
--- number stored in a strlng of 12 bKtes long where the
--= number is right justifie and as the o} low1ng

R format‘ - 3 42 -——— Il t [IN] " [} II

- - 1922937 ———> 1 [} [N} i Illllglllelegll3ll7l
--- USAGE: dec.to.ascii(-9873,ascii.string)

-~=- REMARK: The BYTE[O] of the string carries its length

--- which is always 11, therefore it could be eliminated, but*

--- we decided to keeg
——- ARARRK KKK KA KK ***x*******************x****x***********

-\ A

b 2 B 2 A B B b P
8 W

PROC dec.to.ascii (VALUE integer, VAR string []) =
VAR number :
VAR order.of.digit :
DEF min.int = - 2147483648

SEQ ' ~
number := integer)
order. Of.dlglt := 11 :
%grlng (BYT =1

number = min.int . :
-- taking care limit case .
SEQ .

o
h
r
joxt
1

string [BYTE 1 T '
string (BYTE 2] := '2!
string [BYTE 3 := '1!
string [BYIE 4] := '4!
string [BYTE 5] :='7!
string [BYTE 6 1= 4!
string BYTE 7 := '8!
string [BYTE 8] := ‘3!
string {BYTE 9] := '6'
string [BYTE 10} = 'g!
string [BYTE 11] := '8'

TRUE

SE
¥
number = 0
SEQ
string [BYTE 11 = 0!
string [BYTE 11]:= '0'
order.of.digit := 10
number < 0
SEQ
number := - number
string [BYTE 1] := '-~!

] ~== number > 0
string [BYTE 1] := ' !
-- building up the actual number
WHggg number > 0
string [BYTE order.of.digit] := (number \ 10) + '0O'
number := (number / 10) .
order.of.digit := order.of.digit - 1

SEQ i = [2 FOR (order.of.digit - 1)
gtring[[BYTE g] = 9]

-- PROC hex.to.dec (VALUE‘strinng, VAR integer OKl . ,
——— TR TR T R T TR TR R K e T T e e T K T A AT R T K T R e e e ek e
--- DESCRIPTION: It accepts a hexadecimal representation of
=== a number and converts it into an integer number. It

--~ expects the b¥te[01 of the string to carry the size

--- information of that "hex number'.

--- USAGE: hex.to.dec ("#00003785", number, valid)
- hex.to.dec ('"#1452", number,valid)
-—- hex.to.dec

--- ascii.to.dec (hex.string,number valid)
--~ REMARK: Returns a boolean value FALSE in OK if the

-——- string is not in the correct format.
-mw KEKIKkKA

*
*
*
*
*
“$#19574" number, valid) x
*
*
Je ek ek e e e ek sk ek ok e ok ok ok ok ok ok o ok R K ke sk ok ok e ek ok ok ok ok ok ke ke ek k
PRgg hex.to.dec (VALUE string [], VAR integer, OK) =
integer := 0
IF)
-=- empty strin
string [BYTE 0] = 0
OK := FALSE

-- hex number
stg%ng {[BYTE 0] <> 0

-- starts with '#!'
string [BYTE 1] = '#!'

VAR Count :
SEQ
OK := TRUE
Count := 2

WHILE (Count <= string (BYTE 0]) AND OK
ggg Digit :
?EF hexChars = "0123456789ABCDEF"
IF Index = [1 FOR hexChars [BYTE 0

hexChars [BYTE Index] = string [A;TE Count]
Digit := Index - 1

TRUE
) OK := FALSE)
1nteger := (integer << 4) + Digit
Count := Count + 1
106

"-}‘-' ‘-._“-, P » ‘> ',r ~ o (".r"l w LORY

YR UT N W™

e NN B NN T eI e A e S A N NN N P p T o Nty 0 e

L ST
S

»
i

Y owah aa® wad_ Sab -8l @b ‘al ' et ke . - B " arab sl vl Vol wel b Vol g LN
- " J A

-~ otherwise
string [BYTE 1] < ‘'#'
OK := FALSE

SKIP :

-- PROC ascii,to.dec iVALUE strinng VAR integer Oxl

cme RERARKKARIA TR RAAR R AR R KA KA RA AR AT K e ek e ek
--- DESCRIPTION: It accepts an ascii decimal *
--- ;egresentatlon of a number and converts it into an *
-==- integer number. It expects the byte{0] of the string *
--= to carry the size information of that "ascii number®. *
--- USAGE: ascii.to.dec ("-3785", number,valid *
--- ascii.to.dec ("+1452' number,valid *
--- ascii.to.dec ("19574" number,valid *
-=- ascii.to.dec (string,number,valid) . *
--- REMARK: Returns a boolean value FALSE in OK if the ®
--- string is not in the correct format. _ , *
e AAARARAARKARAARRRAARRARARRRERARRKARRRAKARARKARARKRKRARARRAA AR KA

PRgg ascii.to.dec (VALUE string [], VAR integer, OK) =
?nteger = 0
IF

-- empty strin
string {BYTE 0] = 0
OK := FALSE

== number
string [BYTE 0] <> 0
VAR Sign :
VAR Start :
VAR Length :
SEQ
OK := TRUE
IF)
-= negative
stgéng [BYTE 1] = '~

ign := - 1
Start := 2
Length := string [BYTE 0] - 1

-- positive
string [BYTE 1] < '=!
SEQ

Sign := 1
Start := 1)
Length := string [BYTE 0]

-- convert to integer
SES Index = [Start FOR Length]
Ség Digit :
?%git := string [BYTE Index]

('0' <= Digit) AND (Digit <= '9')
integer := (integer * 10) + (Digit - '0')
TRUE
OK := FALSE
integer := integer * Sign
SKIP :

-= PROC write.strin VALUE strin
_——— ***************g*i***********ngl*************************

-=-- DESCRIPTION: Writes a ?iven string to the screen, in a *
--- byte by byte fashion. It requires that the string which *

107

« B m_=_

--- is a byte array,6 provides the size of the string in its
-=- byte Q¥(otherwise we will get unpredictable results. We
--= are limited to strings up_to 255 characters. For blgger
--- bgte arrays or for partial printing use "send.string”.
USAGE: write.string ('"Hello')

--~- REMARK: It does no grovide an automatic ¢

*
*
*
*
*

: r, 1f. *
mm e ek ok sk sk e s e e sk 2k i gk ke sk e T e e e e ok e e e sk ok e 3 o o ok e i e e e 7k 7 ke ¢ e T o e e e ek ok

PRgg write.striny (VALUE string[]) =
L

Q
BYTE,SLICE.OUTPUT (screené4$ flag,0,1)
SEQ i = [1 FOR string(BYTE 0f]

creen ! strln%[BY E i]
BYTE.SLICE.OUTPUT (screen(4],flag,0,1)

- PRCC write.string. fast (VALUE stringill. .
mm RRRIIKRARIKRAKARAK KR ARR KRR RRR KR KKK TR KRR R R AR A K KK Ak
-=~- DESCRIPTION: This procedure works just in_TDS and speeds ~*
=== up things since the whole block is scheduled by CPU just *
--- once, unllkel{ in the PROC write.string where each byte *
=== 1s individually scheduled. However the terminal driver *
--- routine MUST BE changed prior to the use of this routine.*
--- USAGE: write.string.fast (string) =
kad

e ERRAAAKRRAAAAKAAARAAARAAAARARARARARAARARARRAKRRARAAARARARRRARARRRK

PRQgQwrite.string.fast (VALLE string{])=

]

3YTE.SLICE.QUTPUT (screen{4],flag,0,1)
BYTE.SLICE.JUTPUT (Screen,string,l,string{BYTE 0])
BYTE.SLICE.OUTPUT (screen{4],flag,0,1) :

-- PROC write.number £VALUE integerl

wmm RISk R R T R R R R ek TR e ek e ek e e e e ek ek e e e e e sk ek ke e
-~- DESCRIPTION: This PROC oggputs a signed integer value to *
--=- the screen. It left justifies the number, so that if you *

--- . 1496 -=--> 149
--- USAGE: write.number (integer)

--- write,number(135
e RRRARKKRRARAKRRKRIK RN RRARKIRARA KRR T RAR KRR A AR AR KK KK A KK

--- need it right justified, use the dec.to.ascii and then *
--- the write.string routines. *
--- It uses the following format: *
- 0 =-==> 0 X
--- -234193 -=-=> =234193 :

*

*

PROC write.aumber (7
CEF min.int = - 2
JEF max.digits =
VAR number :

VAR order.of.digit :
VAR digit [BYTE 12]

UE Integer) =
74826438 :

AL
14
11

11

SEQ ‘
aumber := integer
oréer.,of. di1qit = 11

3YTE.SLICE.CUTPUT screen{4],Zlag,0,1)
.number =0
Screen ! 'Q!'
number = min.int
Screen ! '<=';12';'1';'4';'7',;'4';'8';'3';'6';'4' ;'8!

-

TRUE
SE
%
number < 0
SEQ
number := - number
Screen ! !'-

TRUE -~-=- number > 0]
WHILE number > 0 :

SE
gigit [BYTE order.of.digit] := (number \ 10) + 'O .
number := (number / 10) .
order.of.digit := order.of.digit - 1 o
SEg is= [(order.of.dlglt + 1) FOR (max.digits-order.of.digit)]
creen ! digit [BYTE 1i]
BYTE.SLICE.OUTPUT (screen(4],flag,0,1)

== PROC read.string (VAR strin
a—— **************g*i*********2Lll****************************

--=- DESCRIPTION: Reads any input sequence of characters typed*
-~- from the keyboard and stores them in a string, while =
| === echoing them to the screen. The PROC is exited when a
=== ‘cr" is typed.) .

-~=- USAGE: read.strin }1nto.$tr1ng) '))

--- REMARKl: The byte?o carries the size information of the
=== string.

=== REMAREZ: Although it accepts strings_of any length, the
--- size contained in byte{0] will be reliable only for

--- strings up to 255 bytes.

--~ REMARR3: To enter with strings bigger than 80 bytes use
--= the 1f ke¥ in the keyboard. . _
--- REMARK4: The set up of your cr_key in your keyboard will
-=-- determine where the cursor will be at the end of the

b i b S S b b P o 2
(o g

routine.
- FeRAT T e e TR R T e e T Tk e ok e e vk T e i ke ok v e e e ok vk e ok ke ok ke ke v e ke ok ok ok ok ke ok ok ok ok e e ok ok ke ke

PROC read.string (VAR string[]) = !
VAR n, char : K
SEQ -

char := ‘z!

n =0

BYTE.SLICE.OUTPUT (screen(4],flag,0,1)
WHILE char <> cr

SE
%eyboard ? char
Screen ! char

n:=n+1 .
strlngLBYTE n] := char]
Screen !

BYTE.SLICE.QUTPUT (screen[4],flag,0,1)
string(BYTE 0] :=n :

== PROC read.number (VAR number
mmm KARKFRKRARR AR KA IR KRR TR TR AR T A R A R A A kK ok e e ek ok
==~ DESCRIPTION This procedure reads a number as entered from*
--- the keyboard. It accepts the following entries format:
--- 4536122 <cr> * »
--- +3782 <cr> *
--- . =573485 <cr> *
--=- USAGE: read.number (into.integer) *
--- REMARK1l: Only valid inputs will be echoed to the screen, *
-=- so if you enter with -34r5&6, the following will *
--- agpear in the screen: -3456 meaning that the number *
-3456 was accepted. : \
*
*
*
*

*
3

--- REMARK2: This procedure does not check to see if the
=== number is blgger than MAXINT or smaller than MININT. If
~--- that happens the result will be incorrect.

-=-- REMARK3: An automatic cr,lf is provided when exiting.
o FOR TR T e T e e e T e ok ¢ ek e 7 K e T o e e gk ok ¢ e Kk e K 7 ok 7k ok K 5k ok e ok ok 7 ok ok e ok

PROC read.number(VAR number) =

VAR ch : =)
VAR negative
SEQ

, 109

L G L
- _.\.' '.-\.,,. 4- .' .f..r'.r

TN M N N N T N T AT RIS R T aT t LT N |
u)'.\.. -._\., '.'“-" " n J'\.,l" \. R \“.... ‘e ...

. - -

X ch := '2!
number := 0

S

N negative := FALSE
3 BYTE.SLICE.OUTPUT (screen(4],flag,0,1)
) WHILE (ch <> =1} AND (ch <> 1+'3 akD’ ((ch < '0') OR (ch > '9'))
Keyboard ? ch
Ch= [|
SEQ
negative := TRUE
. Screen ! ch
n Ch= |+I)
1l Screen ! ch
- TRUE
SKIP
M WHE%S ch <& c¢r
" -
R WHILE (ch <> cr) AND ((ch < '0') OR (ch > '9'"))
& Keyboard ? ch
L number := (number * 10) + (¢h - '0')
Screen ! ch
Keyboard ? ch
SKIP
“ Screen ! 1f
’ IF B
8 negative
. number := - number
TRUE

f SKIP
: BYTE.SLICE.OUTPUT (screen(4],flag,0,1)

-
. -=- PROC clear.screen

. mmm ke kR R R R A o T ok e e Tk ks gk o 7 e s ok e 7k ok e ok o ok ke ke e e v ok sk e e e e e e e e e e
: --- DESCRIPTION: It clears the screen and homes the cursor. :

-== USAGE: clear.screen
- Tk R e e e R e T T 2K ok e o Tk e e e i T e e Tk sk ok e e ok e e o 7k ok e e e o e ke e e e e e ok ok e e

PROC clear.screen =

- SE
: gYTE.SLICE.OUTPUT (screeng4],flag,0,1)
Screen | esc; ‘'['; '2!'; 'J! --- clear screen sequence
Screen ! esc; '[{'; 'H' --- home cursor
BYTE.SLICE.OUTPUT (screen(4],flaqg,0,1) :

-- PROC pos. cursor (VALUE line, column)
r mm e TR R Tk T Tk 7 T e e ok ok e T e T kK o T K Tk 3k 7 e K e sk s e vk K e sk e e ok ok ke ke ok ok ok sk ke ok ok e ok
p. --- DESCRIPTION: Positions the cursor in a specified line and*
8 === column. We have used the ANSI escape sequence *
. --- ESC (Line;Column H. *
' --- USAGE: pos.cursor (8,30)) *
g --- REMARK1l: Valid values for line are 0 up to 24 *
--- Valid values for column are 0 up_ to 80 *
--- REMARK2: Values out of the above range will cause :
*

-—- unpredictable results,
TR R e O R R KKK KRR AR AR o ok Tk v 7 e ok ok ke ek ek ke e e e e e e ek e ok

PROC pos.cursor (VALUE line
- gén x [BYTE 2], y [BYTE 2§:
F
(lége < 10) AND (line >= Q)

BYTE 0] := 'O

. Y [BYTE 1] := line + #30 ,
(1§28 >= 10) D (line <= 24) o)

BYTE 0] éline<103 + #30
y (BYTE 1 line\10) + #30

column) =

110

e« eae &

B O R N O L SN T e
ERON A e T N e T

DA M e
STl

S SRR JRIPRS
N "

&S
!

T a e €, Gy
.\ . -'\,‘\-

T,

AN N A NN

TR TR TR T VY R PR W R TOT MO R O LR AR OO T ot .

TRUE
SKIP

IF
(cgéumn < 10) AND (column >= 0)
X [BYTE 01 = 'Q!

X [BYTE 1] := column + #30
(column >= 10) AND (column <= 80)

% [SYTE 0] :

YTE 1
TRUE
SKIP
BYTE.SLICE.OUTPUT (screen(4],fla
: BYTE ©

0

Screen ! esc; '[! '
% BYTE 0 X

BYTE.SLICE.OUTPUT (screen{4],flag,0,

column/10) + #30
écolumn<103 + #30

’ ’

1)
? {BYTE 1] ;'
; BYTE 1 ; 'H!
g 1)

-=- PROC new.line iVALUE number

e kKRR AT KRR R TR TR R e e e e ok e ke ek e e e e sk e sk sk ke e e e s e e e ok ke e ke e ok e e e
--- DESCRIPTION: It will skip as many lines as specified in *
-=-- its parameters list. , *
--- USAGE: new.line(4) . . , *
--~ REMARK: Negative numbers will not give any new lines. x

- RARRRR AR AR KRR KR A AR R R KR AT A TR AR AR A K A A TR sk sk ek A Ak ke ko kok

PRgg new.line (VALUE number) =

Q
BYTE,SLICE.QUTPUT (screen{4],flag,0,1)
SEg i = [0 FOR number]
creen ! cr;1f
BYTE.SLICE.OUTPUT (screen{4],flag,0,1):

== PROC space iVALUE number
e TR R T T A K T T A e s Tk e ok s T e o e e 7k ke K ok ok ok e gk i ke e gk e e e ok T e e ok e Kk

--- DESCRIPTION This procedure provides spaces for formatting*

--- a single line. *

--- USAGE: sgage(s) _ _) *

--- REMARK: This routine does not E;ov1de an automatic 1lf :
ine

after reaching the end of the .
mmm RRRKARRAKKKRRT AR KR AR AR kKK A oK e ok ok e Aok ok e e o ok ok e e sk ok e e e

PRgE space (VALUE number) =

BYTE.SLICE.QUTPUT (screen{4],flag,0,1)
SEQ i = [0 FOR number)

Screen ! sp
BYTE.SLICE.OUTPUT (screen(4],flag,0,1):

-=- PROC tab (VALUE number
mme Rk kAR AR AR R AR ST KRR ke ek e ek ok Rk e ok ok e e e gk e ke Rk Ak ok ok ok
==~ DESCRIPTION This procedure provides tabs for formatting a*
--- single line. EZach tab is aquivalent to 8 spaces if the =
--- terminal 1s using the default set up. x
--- USAGE: tab(6) , _ *
--- REMARK: This routine does not provide an automatic 1f :
*

--- after reaching the end of the line,
- ok Tk ok e g ok T R R T R e Tk T TR T Y s ke e TR e e K e e Tk e e e vk ok Tk ok ok ke ke e e e T ok ok ok ok e v %k ok ok

PRgg tab (VALUE number) =

YTE.SLICE.OUTPUT (screen[4],flag,0,1)
SEg i = [0 FOR number]

creen ! tab
BYTE.SLICE.OUTPUT (screen(4],flag,0,1):

111

- . P R e e e e e
‘a " A g R I TR AP P AL L .

LN

’

Y

N AT
o .

! "' N
L \I-
(S
'
o
5
b
L
“
PR

. p_ A w v e e

F I R L

o

e e 7 e T e e e T e T Ko T e T Ko T K 7 K T e 7 K 7k T e K e Ko ok e e ke e K g g gy

DESCRIPTION: This routine sends a string through
eneric channel output. It also allows to speczfg a start *
te, as well as the length of the string to send. *
USAGE: send.string (out.channel,'"hello", 3,3 *
REMARK1: The above example will actually send the :
*
*

-~ PROC send.strin iCHAN outgut VALUE isiiggll*starg string;%ength)
a *

characters 1,1 and o.

REMARK2: It can be used with the channel Screen as well.
cmm KARRAARKAARAAARAAAAAKRAARAAAAKAARAKAKRAARARARRAKARARRRRARARAAARRARK

PRgg send.string (CHAN output, VALUE string[],start,string.length) =
gEQ index = [start FOR string.length]
nggtput ! string [BYTE index]

-- 2ROC receive.string (CHAN input, VAR string(],

VALUE start strlng.lengthl . .
m—e RKRFRA KRR IR AR AR KT A KRR AT A KRR F R K ek ok o o e KRRk R AR Ak A A
--- DESCRIPTION: This routine receives a string through a

--- generic channel input. It also allows to specify the

--- Starting byte, as well as the number of bytes to receive
--- from the incoming string. .

--- JSAGE: receive.string {out.channel,string.in,3,62)

--- REMARK1l: The above example will actually receive 2 bytes

==~ from the lncomlng string, starting at bzte 2.
e RRRIRKRAAAKR K R A AR KRR T AR KRR e 5 R AT 30 ok e e ¢ 7 7k 70 e e o e Ao o 3k e e ok e e e e

PROC receive.string (CHAN input, VAR string[],
VAégE start,string.length) =

gEQ index = ([start FOR string.length]
SK%gput ? string (BYTE lndex?

-= PROC sendiVALUE channel.id, dest.transp message[l start.byte size)
- RRKKRKRIRKFR AR H R AR A A A KR KRR 7R 0 3¢ K ok 70 IR 7 T e e 3k o e ¢ A
--- DESCRIPTION: It is an operating system routine, and it *
--- is used to communicate between processors. It builds the *
=-- header of the message to be sent. It has as parameters *
--= the channel id of the channel which is going to carry on *
--- the communications, the id of the destination transputer *
--- for that message, the start byte and the size of the *
--- message to be transmitted. For every send must exist a *
--- raceive for that same <hannel id in the destination -
--- transputer. *
--- USAGE: send (70,4,message,1,0) *
--- REMARK: The user must be familiarized with the Operating *
x
*

- sttem Structure before using this routine.
o e e o 7k e 7 T e Kk K ke e Tk o ke e 7k ok 7k K e e vk e e vk 7 e 7 ke ok Tk T ok e vk 5k ke e ke g T e gk 3¢ ¢ Tk e ok

PROC send (VALUE channel.id.dest.transp,message(],start.byte,size)=
VAR out,message.slze, nheader [BYTE S5j:
SEQ
<F
size <= 0 =--- send from the start.byte all way to the end.
--- this method 1s valid for messages up to 255 bytes.
--- aven for size < 0 it behaves like it was a 0.
TRggssage.51ze := (message{BYTE 0] - start.byte) + 1
message.size := size

header [BYTE 1] := j
header [BYTE 2] := message.size\256 =--- + remainder)
header [BYTE 3] := channel.id --- any tenth from 40 ug to 240
header [BYTE 4] := dest.transp --- destination transputer

out := route.table [dest.transp]

message.size<256 --- block.size g# of 256 bytes)

112

RRRARR] 6ah M 2 a'a 2’ &' atd ata 0 a¥h a¥A ovi g\l aVa odg ala 2tk ¥ N 9 ga aat @.r ¢av Hav 2a¥ 0at dac 420 3.8 Aol 0008 b 8.8 802 0" W “a b patte g v

A

?ETE.SLICE.OUTPUT (chan[channel.id + out], header,3,1) --- ready flag o
out = 4 d
SE

YTE.SLICE.OUTPUT Elink4,header,1,header.size) ' '
¢ BYEE.SLICE.OUTPUT link4 ,message,start.byte, message.size)
out =

SE
gYTE.SLICE.OUTPUT Elinks,header,l,header.size) .
. BYEE.SLICE.OUTPUT link5,message,start.byte, message.size)
out =

SE

gYTE.SLICE.OUTPUT Slinks,header,l,header.size) .
. BYgE.SLICE.OUTPUT linké6,message,start.byte, message.size)
out = .
SEQ . . :
BYTE.SLICE.QUTPUT (link7,header,l,header.size) .
BYTE.SLICE.OQUTPUT (link7,message,start.byte, message.size) iy
BYTE.SLICE.OUTPUT (chan{channel.id + out], header,3,1): --- done flag .

-~ PROC receive iVALUE channel.id, VAR messa eil message.length[])
cme RRKAKRRKKRAKKRAKRKKRARKRRARIRKKKAIRKR KR KK T RA KRR KK KKK KT KK
--- DESCRIPTION: It is an ogerating system routine, and it *
-~- is used to communicate between processors. It receives *
--- the incoming message, and provides as an output parameter *
-~- the size orf the meSsage just received., The parameter *
-~- channel id must have an exact match with the send *
-—- ogeratlon which originated that message. *
USAGE: receive (70,message.in,size . *
--- REMARK1l: The user must be familiarized with the Operating :
*
*
*
*

PEC L P

--- System Structure before using this routine.
--- REMARK2: Notice that the message.length output parameter,
--- must be a unity array of integers, while the message

--- itself must be declared as an arrax of bytes.
- TP Tk T T e e e A T P A A TR R T T T T T e T T TR R e A T A ok vk e e T e e vk ke ok e vk e ok vk ok e gk ke ok A

PRgg receive (VALUE channel.id,VAR message[],message.length{])=

ORD.SLICE.INPUT gchan[channél.id ,message.length,o,li
BYTE.SLICE.INPUT (chan[channel.id],message,l,méssage.length(0]):

AR AL |

-- utilities

-~ PROC tick.to.time (VALUE start stop board.tzgel

mme KERARIA KKK KRR TR KR KR K R KKK K IR T KA K R R K R A Ak Ak

--- DESCRIPTION: It expects the board type which can be

--- board.type = 0 =-=---> O0PS (VAX VM

~=- board. type 1l -=-=-> B001 (T414:12.5 MHz)

=--- board.type = 2 ----> B002) i

--- board.type = 31----> B003 $T414:15 MHz - high pr;g

--- board.type = 32----> BO003 (T414:1 5MHz - low pri

--- board.type = 4 ----> B004 ‘ '

--- and 2 signed integers regresentlng some tick values

--- obtained by an assignment of the fype TIME ? time.var

--- It then outputs_the corrected elapsed time in hours, min,

--- sec and msec, already taking into account the fact that

--=- the timer wraps around when it reaches MAXINT or MININT.

--=- USAGE: tickk.to.time (timel,timeZ,31)) '

=== REMARK: Although it takes care of the wrapping, it won't *

--~- keep track of the number of times gou have completed one *

=== full cycle of the timer. In order to solve this problem *

--- {ou should record roughly the start time. For example, in*
the VAX/VMS, the full cycle of the timer is 7.2 min, so

--- if you get the elapsed time of 5 min 7 sec 320 msec and * -

=== you have got a rough total time of 12 minutes, then the * .

--- real total time is 12 min 19 sec 320 msec. * -
- KAk Rk sk ok sk ok A A ok ok o Tk T A e v T gk ok e 3 ok e ok sk e 7k 7k e ok Tk ok o Ak %k gk ok e sk e v e Tk ok o e ok ok v e ok .

o s}

L 2P I b 3 3 b b b

* % Ok 4

113 3

v LA PN PaE PR P T s RE T AAL SUE A JP DN
\-r‘\\'\-‘ﬁ\\ A e i T e e O T P T S S e e e N R e SR T VN A T S AN
LE&.’J&*‘MM 5 W vy

PROC tick.to.time (VALUE start, stop, board.type) =
-=- constant definitions

DEF vax.sec =10000000 : === hundreds of nsec/second
DEF vax.mili = 10000 : ==~ hundreds of nsec/milisecond
DEF b00l.sec, = 625000 : ==~ # of 1.6 usec/second

DEF b00l.mili = 625 : -=~ # of 1.6 usec/milisecond
DEF b003h.sec = 1000000 : --~ # of usec/second

DEF b0OO3h.mili = 1000 : --- # of usec/milisecond

DEF b003l.sec = 15625 : --- # of 64 usec/second

DEF b0031l.mili = 16 : --~ # of 64 usec/milisecond

DEF max.number.of.ticks = 2147483648 : --- maximum integer (2%*%*31)

VAR elapsed.tick :

VAR factorl, factor2 : _

VAR msec, tot.sec, sec, min, hr :

SE
%

board.type = Q -=-- VAX VMS

SE
%actorl := vax.sec .
factor2 := vax.mili

board.type =1 --- B0OO1

SE
%actorl := b00l.sec
factor2 := b001.mili

board.type = 2 --- B002
SKIP === not implemented
bogéd.type = 31 === B0O03 in high priority
%actorl := b003h.sec
factor2 := b003h.mili
boggd.type = 32 === B002 in low priority
gactorl = b003l.sec
factor2 := b0031l.mili
board.type = 4 --- B004
SKIP --- not implemented

§%apsed.tick := stop - start
elagsed.tick <0
e

I‘Rm_‘apsed.t:i::k := elapsed.tick + max.number.of.ticks
SKIP
tot.sec := elapsed.tick/factorl
hr = tot.sec/3600
min = (tot.sec\3600)/60
sec = tot.secé60.
msec = (elapsed.tick\factorl)/factor2

-- output time to screen
write.number (hr

write.string (" hr ")
write.number (min)
write.string (" min ")

write.number (sec)
write.string (" sec ")
write.number(msec)
write.string (" msec")

-~ PROC dumg iVALUE begin.address countl
e Fededeekk s ek s gk ok A ok ok 5k e e ok ok Kk Tk ek ok ok e T K e Tk ok e e e e Tk e e e ¢ e e e ok e o ke ke ok e ok ok

114

et o T2 &, e T, .

“p e " - N e A e L g T e, T AR T T R T SRR
PR RN T N ~_ T TS Y N TN IR -_..-'. P P AN TN T R S N

a

B R e e

==~ DESCRIPTION: This procedure dumps_ the memory starting at
==~ the given '"begin.address". The value for the

==~ 'begin.address" can be either in hex or decimal. .
--- The count value determines how many words in memory will
-=- be retrieved.

~--~ USAGE: a) dump (#80003540,100)

=~ b) dump (1024,48

--- c) dump (-5113,1024)

--- REMARK1: When specifying the count value remember that
==~ the retrieval is done by words, not bytes!!!

--- REMARKZ: If count is not a multiple of 4 it will use the
=== closest upper multiple.

--- REMARK3: Negatives or zero values for count although

--- accepted, will give ou no output.
[latat o Tk e e 7k Tk Tk e e Tk e Fe k¢ kT % 7o K Fe K T Kk Kk K K K e K gk e e ek T gk e K TR T R TR R ke Tk ok Aok g

LR R I B I

PROC dump (VALUE begin.address, count) =
VAR word.read:
VAR hex.value [9], hex.addr(9]:
VAR address, align, times:

SEQ.
times := 0
new.line(l) ,
address := begin.address
== aligning a given address
align := aadress\4

IF
align <> 0
address := address - align

WHILE times <= count
SEQ .
write.strin é“address ")
dec.to.hex %a dress, hex.addr)
write.string §hex.addr
wrltg.strln? o we> ")
sngl = (0 FOR 4]

ETWORD (word.read, address)
dec.to.hex (word.read, hex.value)
write.string (hex.value)
space(2)
times := times + 1

SKIP
address. := address + 16
new.line(l)

SKIP:

-- PROC transfer.rate (VALUE start stop board.tyge nr.of.bvtes, VAR rate)
- Rﬂ********xw******xx*x*x********x*X********x x*****x**i***
DESCRIPTION: It 1s basically the same routine 1as

=== tick.to.time, with the only dirfference that it returns a
--=- rate value 1in Kbits/sec i1nstead of a time wvalue,.

--- USAGE: transfer.rate (timel timel,6 31,4096, rate)

--- REMARK: If further information is needed, please refer to

~=- routine tick.to.time *
P aat .t 8. 3. 8 222 2 S PP L S PELEELLLETLTIILIL LSS ELETEESLEETTEESLTEEEEE T

* 4 4 A 4

PROC transfer.rate (VALUE start,stop,board.type,nr.of.bytes VAR rate) =
-= constant definitions

DEF vax.sec =10000000 : --=- hundreds of nsec/second
DEF b00l.sec = 625000 : --- # of 1.6 usec/second
DEF b0O3h.sec = 1000000 : --- # of usec/second
DEF b003l.sec =_ 15625 : --- # of 64 usec/second
DEF max.number.of.ticks = 2147483648 : --- maximum integer (2**31)
115
St :.;.s - - e T -_:r-.':_\"_-_:_-.:_-_:_._-.. :‘-.:‘:':'L-..'.‘L'.‘-.-":F-':"‘.:“.‘;‘.'.:-.f:"'\nf.‘:':.l".‘:'.‘—v'\}\;‘:'-

- a n" TN,
NS RN

;
:

-- variable declarations
VAR elapsed.tick :
VAR factor : --= to convert ticks to seconds

SE

Q
g%apsed.tick := stop - start

elapsed.tick < 0))
RLeIEapsed.tick := elapsed.tick + max.number.of.ticks

SKIP
E- selection of correct factor iaw the board
board.type = 0 --- VAX VMS
factor := wvax.sec
board.tvpe =1 --- B0O1
ractor := poO0l.sec
board.type = 2 --- B00Z
SKIP --- not implemented
board.type = 31 ==~ B003 in high priority
factor := 5003h.sec
board.type = 32 --- 3003 in low priority
factor := b003l.sec
board.type = 4 --- B004
SKIP --- not implemented

-- rate calculation

board.type = 22 .
rate := ((nr.of.bgtes*s *factor)/(elapsed.tick*1000)

TRGE- operation is done this way to keep precision ok!
rate := ((nr.of.bgtes*sgf(factor/lOOO))/elapsed.tick .
--=- operation i1s done this way in order not to exceed maxint
-=-- on_the numerator. '
--- mulglplg b{ 8 due to 8 bits per byte) ‘
=== divide by 1000 to have the tranfer.rate in kbits/sec

SKIP:

-- PROC capitalize (VAR ch{])

- TTTTCNCTCRRR TR TR AT KK R KR K K T 7 Tk T 3k e 7 e Te ke T e sk e v Yo T e e e e ek e e e sk gk e 7 Kok kK
~-=- CESCRIPTICN: It capitalizes the first character in any *
--=- string. *

~-~ USAGE: capitalize istringl x
e KR AR TCH R TR T T T T R A R T e e e e gk e gk sk ok ek ke ke e ok ok 7k e ek ok ok e ok ok e g

PROC capitalize (VAR ch{]) =

OEF delta ={'a' - 'A')
=== A ~==> 65
~=e 3 ~==> 37 ASCII values
-—- 2 ===> 122
SEQ
1F
(ch [BYTE 11 <= 'z') AND (ch [BYTE 1] >= 'a')
TRS? {BYTE 1] := ch [BYTE 1] - delta

116

-- PROC operating.system
PROC operating. Xstem =

-- PROC input.handler
PROC input. handler =
-- variable and constants declarations
VAR header0 (BYTE 5
headerl [BYTE 5
header2 {BYTE 5
header3 [BYTE 5

7
!
’
?

buffer.in0 [BYTE max.block.size
buffer.inl {BYTE max.block.size
buffer.in2 |BYTE max.block.size
buffer.in3 [BYTE max.block.size

~ v N~

block.sizeQ[1l], outO,
block.sizel[l], outl,
block.size2|1l], out2,
block.size3[1l], outl:

SEQ
-- 1n1t1allzlng the buffers

SEg [0 FOR max.block.size]
guffe* in0 [BYTE i = 10!
bufier.inl [BYTE i} := '1!
buffer.in2 [BYTE i} .= '2'
buffer.in3 [BYTE 1] := '3
SKIP
PAR
WHILE TRUE .
-- listen to link0
SEQ
- rece1v1n? the header .
BYTE.SLICE NPUT (linko, headerO,l,header.s;ze)
-~= decodlng the block
block.size0[0] := 256 * headerO[BYTE 1])+headerQ[BYTE 2])
~- buffer1n? the message)
BYTE.SLICE.INPUT (link(,buffer.in0,1l,block.size0[0])
IF
~- the messa e lS to be bypassed
headerO [BYT <> this.transputer
-- finding the best link to ocutput that message
out0 := route.table [header0 [BYTE 4]]
-- outputing to the requ1red link
--- request flag thru chan 4, 5, 6 or 7
?ETE SLICE OUTPOT(chan[outO] header0,3,1)
outl0 = 4
SEQ
SYTE.SLICE.QUTPUT Elink4,header0,l,header.size)
BYTE.SLICE.OUTPUT (link4,pbuffer.in0,1,
block.size0Q[0Q])
out0 = 5
SEQ .
BYTE.SLICE.OUTPUT Ellnks ,header0 1, header.size)
BYTE.SLICE.OUTPUT (link5,buffer.in ,1,
block. 51zeO[O]
outQ =
sx-:g _
YTE.SLICE.OUTPUT gllnks ,header0 1, header.size)
BYTE.SLICE.OUTPUT (linké6 buffer.in0,1,
block. SlZEO[O]
out0 =
117
‘f’fgr{ Q{'I{J;I;rﬁl A uf;f I.I~I\f%-,;\¢.-\f\f e w . ::‘::J"r"a“:“ “e“:?st:

L T T

NAA LAY g I Y,

IR RITY,

L 4% 5

PR AL

LR Y
* -

SE
gYTE SLICE.OUTPUT 211nk7 ,header0, 1 header.size)

BYTE.SLICE.OUTPUT (1ink7,buffer.in

block. 51ze0[0])
~-=- release flag
BYTE.SLICE.OUTPUT{chan[outQ], header0,3,1)

== the messa e 1s for this transputer
heggero [BYT = this.transputer

F
headero [BYTE 3] <> scrn
SEQ
-- passing the size of the message
(block.sizeQ[0
WORD.SLICE.OUTPUT (chan[header0 [BYTE 3
block.size0,0,1)

-- oassing the message itself

BYTE.SLICE.OUTPUT (c an[headerO [BYTE 3]],
buffer.in0,1,block. 512e0[0])
TRUE ==~ if channel.id = 40 = scrn
SEQ

== I'm re adg
BYTE.SLICE.OUTPUT (screen[0], header0,3,1)

-- out utting to the screen, ,
send. s ring ?Screen,buffer.lno,l,block.sxzeO[O])

-- I'm don
BYTE. SLICE OUTPUT (screen{0],header0,3,1)

WHILE TRUE)
-- listen to linkl
SEQ

-- rece1v1n? the header '
BYTE.SLICE.INPUT (linkl, headerl,l,header.szze)

- decodln? the block
block.sizel[0] : (256 % headerl[BYTE 1])+headerl1[BYTE 2])

" ~= buffer*n? the message) .
BYTE.SLI.Z.INPUT (linkI,buffer.inl,1,block.sizel[0])

IF
-- the message is to be bgpassed
headerl [BYTE 4] <> this.transputer

-- finding the best link to outgut that message
outl := route.table [headerl [BYTE 4]

-- outputing to the required link
~-- request flag thru chan 14, 15, 16 or 17
?ETE .SLICE.OUTP T(chan[10+outl] headerl, 3, 1)

ougéQ= 4
BYTE.SLICE.OUTPUT gllnk4 ,headerl,1l header.size)
BYTE.SLICE.QUTPUT (link4,buffer. 1nl 1,
block. 512el[0])

SE
gYTE.SLICE.OUTPUT 211nk5 .headerl 1, header.size)
BYTE.SLICE.OUTPUT (linkS5,buffer. 1n1 1,
block. 51ze1[0])

SE
SYTE.SLICE.OUTPUT SllnkG ,headerl 1,header.size)
BYTE.SLICE.OUTPUT (link6,buffer. 1n1 1,

118

A T A I T S T I AL L I A Sy ot Tt e AT T T R T " AT ettt N T LT T Lt AT R Lt T T T AT N, “
! \1'\"\" OO NI P P AT RTINS A RN Ay A NP ‘.*"-'-" bl ‘.‘\-' PRy IR, -“'-"\-'

rvmmmvmwmm“w VIUYURURU YUY UN LY

block.sizel[0])
outl = 7

SE
gYTE SLICE.OUTPUT gllnk7 ,headerl 1, header size)
BYTE.SLICE.OUTPUT (link7,buffer. 1n1

block. szzel[O])
=== release flag
BYTE.SLICE.QUTPUT(chan[10+outl] , headerl,3,1)

== the message is for this transputer
heggerl [BYTE = this.transputer

F
headsrl [BYTE 3] <> scrn

-- passing the size of the message
{(block. 51ze1[0]}
WORD.SLICE.OUTPUT (chanlheaderl (BYTE
block.sizel,D,

-- aSSLng the message itself

SLICE.OUTPUT (chan[headerl [BYTE 3]],
buffer.inl,l,block.sizel[0])
TRUE --=- if channel.id = 40 = scrn
SEQ

== I'm re
BYTE. SLICE OUTPUT (screen{l], headerl, 2,1)

-- out utting to the screen. .
send. s ring ?Screen,buffer.lnl,l,block.51zel[0])

-- I'm don
BYTE. SLICE OUTPUT (screen{l],headerl,3,1)

WHILE TRUE _
-- listen to link2
SEQ
== rece1v1ng the header '
BYTE.SLICE.INPUT (link2,header2,1,header.size)

-= decodlng the block size
block.size2[0] ((256 * header2{BYTE 1])+header2[BYTE 2])

== bufferln? the message) ,
BYTE.SLICE.INPUT (linkZ,buffer.in2,1l,block.size2[0])

IF
-~ the message is to be bypassed
hegdsrz [BYTE 4] <> this.transputer
-- finding the hest link to output that message
out2 := route.table [header2 [BYTE 4]]

-- outputing to the required link
--- request flag thru chan 24, 25, 26 or 27
§§T E.SLICE. OUTPOT(chan[7O+out2] 1eader2,3,l)
L

out? =

SE
gYTE.SLICE.OUTPUT gllnk4 header2,1,header.size)
BYTE.SLICE.OUTPUT (link4 . buffer.in2

block. sxzeZ[O])
out2 = §

SE
8YTE.SLICE.OUTPUT EllnkS ,header2, 1,header.size)]
BYTE.SLICE.OUTPUT (link5.buffer.in2
t2 block. 512e2[0]) !
out2 =

SEQ b

119

?
BYTE.SLICE.OUTPUT glinks,headerz,l,header.size)
BYTE.SLICE.OUTPUT (linké,buffer.in2,1l,
block.size2[0])
out2 = 7 :
SEg . . h
YTE.SLICE.OUTPUT 21;nk7,headerz(l,header.51ze)
BYTE.SLICE.OUTPUT (1link7,buffer.in2,1,
block.size2[0]) K
--- release flag .
BYTE.SLICE.OUTPUT (chan{20+out2] , header2,3,1) .
r
-- the message is for this transputer f
heggerZ [BYTE 4] = this.transputer 0
F -
header2 [BYTE 3] <> scrn ;
SEQ)) ‘
-- passing the size of the message .
(block.glzeZ[O]i p.
WORD.SLICE.OUTPUT (chan&headerZ {BYTE 3]],
block.size2,0,1)
-- passing the message itself F
BYTE.SLICE.QUTPUT (chan[header2 [BYTE 3]], ’
buffer.in2,1,block.size2{0}) -
TRUE --- if channel.id = 40 = scrn “
SEQ
== I'm readg
BYTE.SLICE.OQUTPUT (screen{2],header2,3,1)
-- outgu;tin to the screen , .
send.string ?Screen,buffer.lnz,l,block.szzeZ[O]) -
-- I'm done Y
BYTE.SLICE.OUTPUT (screen(2],header2,3,1) N
WHILE TRUE
-- listen to link3 8
SEQ , .
-- receiving the header -
BYTE.SLICE.INPUT (link3,header3,l,header.size) o
-- deco@ing the block size -
block.size3{0] := ((256 * header3(BYTE 1])+header3[BYTE 2]) s
-- buffering the message . . N
BYTE.SLICE.INPUT (link3, buffer.in3,l,block.size3[0]) o)
IF ’
-- the message is to be bypassed -
hegggrB [BYTE 4] <> this.transputer <
-- finding the best link to outggt that message . J
out3 := route.table [header3 [BYTE 4]] 4
-- outputing to the required link N
-=-- request rlag thru chan 24, 35, 36 or 37 .
?ETE.SLICE.OUTP T(chan(30+out3], header3,f3,1) .
out3 = 4 P
SEQ . N
BYTE.SLICE.OUTPUT 21;nk4,header3‘l header.size) -]
BYTE.SLICE.OUTPUT (link4,buffer.in3, I, N
block.size3{0]) .
out3 = § .
SEQ , ' -
YTE.SLICE.OUTPUT Sl;nkS,headerB(l header.size) :
BYTE.SLICE.OUTPUT (link5,buffer.in3,1, PS
block.sizeﬁ[O]) ;
120 : %
5
°

- - A r e TR s et s A g A R S S T T e e e AT AT A T N
LN AL AR U U ,_I'%!\J"r,' f.,.\.vr,“'f LN AL .' (s o - -r ' .r e ,-‘_ "

out3 = 6

SE
gYTE SLICE.OUTPUT éllnké ,header3 1, header.size)
BYTE.SLICE.OUTPUT (link6,buffer. 1n3 1,
block.size3[0])
out3 = 7

SE
%YTE SLICE.QUTPUT éllnk7 ,header3 1, header.size)
{ BYTE.SLICE.OUTPUT (link7.buffer.in3,1,
block. 51ze3[0])
--=- release fla

BYTE.SLICE.OUTPST(chan[30+out3] header3,3,1)

-- the messa e 1s for this trarisputer
, hegger3 [BYT = this.transputer

F
head8r3 [BYTE 3] <> scrn

[-- passing the size of the message
| (block. 51ze3[0]3
| WORD.SLICE.OUTPUT (chan[header3 [BYTE 3

! block.size3,0, l)

-~ nassing the message itself
BYTE.SLICE.QUTPUT (c an[headers (BYTE 3]],
buffer.in3,1,block. 51ze3{ 1

TRUE ~--= if channel.id = 40 = scrn
SEQ
- Il
BYTE. SLICE SUTPUT (screen[3],header3,3,1)

-- out utting to the screen
send. s ring ?Screen,buffer.in3,l,block.sxzeS[O])

-= I'm done
BYTE.SLICE.OUTPUT (screen[3],header3,3,1)

-- PROC output.handler
PROC output.handler =
~-- local variable declarations
VAR flag4 [BYTE 2]:
VAR £lag5 |BYTE 2]:
VAR flag6 [BYTE 2]:
VAR flag?7 [BYTE 2]:

PA%HILE TRUE
ALT i = EO FOR max.io.channels]
chan [(10*i) +4] ? flag4 [BYTE Q0] ==~ for 11nk4
WHILE %ggE.SLICE.INPUT (chan [(10*i) +4],flag4,0,1)
ALT j = EO FOR max.io.channels]
chan [(10*j) +5] ? flag5s {BYTE‘O] --- for 1link$§
WHILE %EEE.SLICE.INPUT (chan [(10*3j) +5],flag5,0,1)
ALT k = EO FOR max.io.channels
chan [(10*k) +6] ? flagé [BYTE 0] --- for 11nk6
BYTE.SLICE.INPUT (chan [(10*k) +6],flagé,0,1)
WHILE TRUE

ALT 1 = [0 FOR max.io.channels
chan 10*1) +7] ? flag? [BYTE Q0] --- for 11nk7
BYTE.SLICE.INPUT (chan (10*1) +7],flag7,0,1):

-= PROC screen.handler
PROC screen.handler =
VAR flag [BYTE 2]:

...............................
.........................
')

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

WHILE TRUE
ALT 1 = [Q FOR max.screen,channels]
screen 11 ? flag[BYTE 1] ,
BYTE.SLICE.INPUT (screen[i],flag,l,1):

-- SC PROC terminal.driver (CHAN Kexboard Screen,VALUE port,baud.rate)
——m RRRRKRKRA KK KRR AR AR A TR e ke e A ek

--~ This routine is grovided by the manufacturer, and it

--~ varies with the board we are using. This particular

--~ one is for the BQOl board.
ama KA TR R R R e A TR R e ok T e o ok R 7 e e R K o ok e ok ok ke ok ke gk e e e e ok

-- PROC terminal.driver(CHAN Keyboard,Screen,VALUE port,baud.rate)
PROC terminal.driver (CHAN Keyboard, Screen, VALUE port, baud.rate)=
-~ T414 Board Definitions
-- declare constants
DEF bpw
JEF Dbits.per.word 32 '
DEF perif.base #80040000 : =-- base address of peripherals

~- duart register addresses

-- See table 1 'Register addressing' on page 6 of
~- the SCN2681 data sheet.
-~ These are all word offsets from address zero

DEF uarti perif.base + 0

DEF uartB = perif.base + (8'* bpw)

CEF mode.reg

DEF status.reg
DEF clock.select.reg

* bpw :

bpw :
*bgw:
DEF command.reg ~ bpw :

bpw :

CEF rx.reg b
pw :

DEF txX.reg

DEF input.port.change.reg

bpw : uarta
DEF aux.control.reg

bpw : uarta

DEF interrupt.status.reg

. bpw : uarta
PEF interrupt.mask.reg

bpw : uarta

DEF input.port

T bpw : uartB
DEF output.port.conf.reg

bpw : uartB

PEF timer.upper.reg

bpw : uarta
DEF timer.lower.reg

bpw : uarta

DEF start.counter

, bpw : uartB
DEF set.output.port.bits

bpw : uartB

DEF stop.counter

' bpw : uartB
DEF reset.,output.port.bits

bpw : uarts

~Nd OOy Ny 0nn ot pad WW NN e O

-- declare register values
-- MRl mode register 1

@7,

DEF rx.rts.control
DEF rx.int.select
DEF error.mode

DEF parity.mode
DEF parity.type
DEF bits.per.char

#00 : -- no rts control

#00 -- interrupt on rx.ready
#00 - -- character error mode
#10 : -- : disable parity

#00 : -- [2] even parity

#03 : -- : 8 bits per char

DEF MRl.control = rx.rts.control \/
rx.int.select \/

D S

122

ST N T O T TRl
~-P..u' I":'_o' o I\.lx.' J'__- PR .'w. ‘-r..._.. _"4‘ . _:A_(_‘._‘- - e AP

“

s

.'.l. a - \n I'

N RJUAN IR RS AN

error.mode \/

parity.mode \/

garlty . type \/
its.per.char

== MR2 mode register 2

DEF channel.mode
DEF tx.trs.control
DEF cts.enable.tx
DEF stop.bit.length

DEF MR2.control =

== CR

DEF bit.seven

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
DEF
DEF

-- SR

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

no.command

reset.mr.ptr

reset.rx
reset.tx
reset.error
reset.break
start.break
stop.break

enable.rx
disable.rx
enable.tx
disable.tx

received.break
framing.error

parity.error

overrun.error

tx.empty
tx. readz
fifo.£full
rx.ready

= #00 : == [7:6] normal channel mode
= #00 : -- [5 rts control not used
= #00 -- |4 cts control not used
= #07 -- [3:0] 1.000 stop bits

channel.mode \/

tx.trs.control \/

cts.enable.tx \/

stop.bit.length

[T I T 1 1 T]

status register

#01

command register

.
<

#00 : -- [7] not used must be zero

== [6:4] misc comds never combined
$10 : -- make mode register point at 1Rl

430 X

J

H#
o
N
]
'
oW

oW AONIOVI

[T S S B B |
| I N I N T B]
—Pr—r—rr—r——r—r—

-- OPCR output port configuration register

-- Mask this beast out before programming the timer
#00

DEF OPCR.control =
-- ACR

DEF brg.set.select

DEF counter.timer.mode
DEF delta.ip3.0

DEF ACR.control =

== IMR

.ﬂ o -'_.,,-' <

\ - "1

S n

.int

brg.set.

-- [7:0] mask out output port

aux control register

#00 : -- {7] select set 1 baud rates
-- for CSRA

#00 : -- [6:4] external counter

#00 : =~ no bits in IPCR affect
-- in IMR [7]

select

\/
counter. tlmer mode \/
delta.ip3.0.int

interrupt mask register

AL f o a a ! r.

\ AT R N PSR - X ; ., R Yy

Yy S Y Y

PP PR

.‘.',‘,'-55"1‘

"“\"\\I

ER LY

et T
UL

AT

-2,

P R IR I
(A

54 NS

N A

» ¥YX W W o
P

-
.

hl
»

............

P

DEF IMR.control = #00:

~« [7:0] no interrupts
-- PAL bit registers
-- RS232 R¥ data and switches

-= T414 i/o

rocs

-- PROC reset.uart (VALUE uart,baud.rate)
PROC reset.uart (VALUE uart, baud.rate)=
VAR now, the.future

Paagien
A

a
- B

LR NA
J".""‘.‘)-’G‘

M
Tl e

-

.
»
LR

. -’ .I' ‘f{“" g

»
V' I

N

Fd
LJ
s

A4

L L B

e
s Yo s
«"e 2

M,

fl ,Ij‘l 4

DA

4§ LAY
KR A)

SEQ
PUTBYTE (reset.mr.ptr\/disable.rx /disable.tx,uart+command.regq)
PUTBYTE (MRl.control, uart + mode.reg
PUTBYTE (MR2.control, uart + mode.reg
PUTBYTE (ACR.control, uartA + aux.control.reg)
PUTBYTE (baud.rate, uart + clock.select.regq)
PUTBYTE (no.command\/enable.rx /enable.tX,uart+command.reg)
-- wait a bit
TIME 7 the.future
TIME ? now

the. future the.future + #40000
WHILE the.future AFTER now
TIME ? now

SKIP:

-~ PROC read (CHAN out, VALUE uart)

PROC read (CHAN out, VALUE uart) =
-- read from keyboard with deschedule between polls
VAR status, ch :

SE
8HILE TRUE
SEQ

-- read status
GETBYTE (status, uart + status.regq)

-- wait for received character N
WHILE (status /\ rx.ready) =0
PAR
SKIP

-- tr¥ status again
GETBYTE (status, uart + status.regq)

-=- read the character
GETBYTE (ch, uart + rx.reg)

-~ output the character
out ! ch

SKIP

-- PROC write (CHAN in,
PROC write (CHAN in,
-- write to uart
VAR uart.failed :

SEQ
uart.failed
WHILE TRUE

VAR c¢h
SEQ
%n ? ¢h

F
(ch < 0) OR (uart.failed)
SKIP

TRUE
-- wrch (VALUE ch, uart) with timeout
DEF timeout = 3200000 :
VAR status, count :
SEQ
status 0

VALUE uart)
VALUE uart) =

FALSE

« =

124

-

count := 0 .
ng%E ((status /\ tx.ready) = 0) AND (count < timeout)

ETBYTE (status, uart + status.regq)
IF count := count + 1
count = timeout
Ruart.falled := FALSE --=-TRUE

UE
PUTBYTE (ch, uart + tx.regq)
SKIP

. == main program
géR uartp: 9

F
port = 0
uart := uarta
TRUE
uart := uartB
giget.uart (uart, baud.rate \/ (baud.rate << 4)})
read EKeyboard, uartg
write (Screen, uart
SKIP :

125

e

o

et e A A A TR W T T e P A Pt AT N N P L N s Al TN ey
-, '—-"*J'\J"\-I‘f' ‘\-('\q._-‘,-"'i\'-"ﬁ‘slk

O e S N Rt S Oy
" - g -

QE main body of the operating system -
-- receiving the routing table . “
route.tablefo := t0 ===~ output link to transp #0]
route.table|1l = tl --~ output link to transp #1 .
route.table[2 = 2 --- output link to transp #2
route.table[3 = t3 --- output link to transp #3 5
route.table[4 = t4 --=- output link to transp #4 o
route.table(5 := t5 --- output link to transp #5 :
route.table[6 = th --=- output link to transp #6 ;
route.table(7 = t7 === output link to transp #7 K
route.table(3 = t8 === output link to transp #8 Ny
route.table(9 := 9 --- output link to transp #9 .
route.table|l = tl0 --- output link to transp #10
route.table{ll = tll --=- output link to transp #11 =
route.table(12 = tl2 --- ocutput link to transp #12 -
route.table| 13 = ti3 --- output link to transp #l3 "
route.table[14 = tl4 --- output link to transp #14 ’
route.table|lS := tlS§ -~-=- output link to transp #1595 s
route. table 161 = tlé6 --- output link to transp #16
route.tabletl? = t17 --- output link to transp #17 .
PAR :

output.handler .
input.handler R
zerminal.driver(Keyboard,Screen,port,baud) -
screen.handler -
>
L4
L
L
A}

126

-, .."..

n’

- *ata" 'l'l.-'l\-'q'.'l'l'. -
RS AR RO YR

APPENDIX E

THE OPERATING SYSTEM FOR REMOTE TRANSPUTERS

(REMOTE_OS.TDS)

- Redkok e Yook v e e e g T Y e v e gk T s ok e 7R e e A A e ok e 7R ok e ok e e o e ok ok o ok ke ke ke ke ke e ok Ak ke ke

--- * Title: REMOTE_0S.TDS * Version: 1.0 *
-——% Author: MAURICIO DE MENEZES CORDEIRO * Mod: 0 *
-== * Date: 13/MAI/1987 e e Fe Ak gk e e A ek R Rk
--- * Programming Language: 0CCaM 1 *
=== % Compiler: "IMS 3-500 (VAX/VMS) .] *
-—- = Brief Description: This program contains the source =
--= % code Ior a1 communications operating system for remote~
--- ~ processors in 1 network of :ranspufers. It must be =
== = glaced in parallel with the user process, o *
——m RFAKTRKRAKRRR AT IR KK A KRARR KKK R AR R RKR TR KRR K KR KK KA AR KK R K
=== * Mod #: Date: *
--- * Responsible: *
--- = Brief Description: :
- X

- CRRTR AR TOR TR AR AR R AR R R TR R T T AR e e K F A AR T RR R TR AT KRR TR KR AR A kK
=== * Mod #: Date: *
=== * Responsible: x
--=- * Brief Description: x
-—-- X x

- KR TR R TR R R A TR AR R Fe T R R T T AR T TR R 7 e e R e o e e e T e R e T ok TR K T ok e R R R TR R
-~ Operating System global declarations

DEF max.block.size =74100:

DEF nr.of.transputers = 17:

JEF neader.size = 4:

DEF scrn = 40: --- channel screen

DEF max.io.channels = 25: -== 0 up to 240, in tenths
DEF max.screen.channels = 5:

VAR route.table{18]:

VAR flag {BYTE 1]: --- for the library routines

CHAN chan [10 * max.io.channels]: --=- Actually it should be

---(10*(max.io.channels-l)5+8

CHAN screen [max.screen.channels]:

-~ global_def.tds

.o RIRR TR AT KRR e e ek Tk e K R e sk e 7k e e T ek kAT sk kK gk e ok sk e e Tk ok 7 A v e
--- At zhis »oint we should imbed the filed Zold ~
--- global_der.tds, whicn is described in Appendix 3 ~
- TR R TTTRKRTCRTCRR TR TR TER R K TR IO K TR TT T RTR KRR K KKK K KRR KR KRR

- Ope:ating System.Channel Placements
CHAN 1linkO AT linkCin
CHAN linkl AT linklin

CHAN link2 AT link2in
CHAN link3 AT .:1nk3in
CHAN _:ink4 AT .inkOout:
CHAN link5 AT linklout:
CHAN link6 AT linkZout:
CHAN link7 AT link3out:

-- remote_lib.tds
-- io_routines

-- PROC dec.to.hex (VALUE integer, VAR stringlll
e RRRFKRA KRR KK AR KRR AR KA K Rk Ak KKk e e ok e e de e ok sk e e Ao

--- DESCRIPTION: It converts an integer number from its *

--=- decimal representation into the equivalent hexadecimal *

-~-- one. It accepts any valid integer. It returns the *
127

LI

e

AR AT AT A TR T AT A AT AT RIS R SR

At

)‘I.l ll

P A

Ny

[R AU

- 'l.' N 'l‘ [N

i 13

Cn 2 e e)
¥

A

v .
s e "
-

s

@ et e

: --- hexadecimal number stored in a string of 10 bytes long *
y --- where the leading zeros are preserved. *
] --- It returns the following format: [size]#0000FFFF *
’ --- USAGE: dec.to.hex(37182 hex.string) . . *
--- REMARK: The BYTE[OQ] of the string carries its length *
--- which is always 9, therefore it could be deleted, but *
--- we decided to keep it. *
h mme KAKRAKKRKIARAKRRKRAKKAKKKRKARKKIKRKK KKK KKK KKRAKKKKKKRARK K
X PROC dec.to.hex (VALUE integer, VAR string []) =
) VAR first, order.of.digit, digit :
\ VAR number :
. gEF hex.char = "012345678SABCDEF"
%irst := TRUE
string [BYTE O] = 9
string tBYIE 1] == '#'
number := integer
. order.of.digit := 9 .
- WHgéE (number > 0) OR (first=TRUE)
gigit := number /\ #F o
digit := hex.char [BYTE digit + 1]
string [BYTE order.of.digit] := digit
number := number >> 4 i
| order.orf.digit := order.orf.digit - .
f£irst := FALSE
SEQ 1 = [Z FOR {order.or.digit - 1]
string (3YTE 1] := '0':
) -- PROC‘dec.to.ascii.(VALUE,integer(VAR string [])
- KRR TR AT TR R R KKK KT FK KR KK R 7K R A AR KA TR K K kR R KR R Rk e ek Kk sk ek ok
--=~ DESCRIPTION: It converts an integer number from its *
--- decimal representation into the equivalent ASCII cne. It *
--~ accepts any valid integer number. It returns the ASCII o ¢
--- number stored in a string of 12 bgtes lon?, where the =
--- number is right justified and it has the following *
ee=~ format: = 3842 T eea> ‘el b0 b ba o011 11300 ITg0 *
- 1922937 ———> 1 [} 11 i IIllIglllelegllBll7l x
--~ USAGE: dec.to.ascii(-9873,ascii.string) ‘ *
--~ REMARK: The BYTE[Q] of the string carries its length *
--~ which is always 11, therefore it could be eliminated, but*

--~ we decided to keep it *

- RRRRR R TR KN AR K AR ***;************************k***********

PROC dec.to.ascii (VALUE integer, VAR string []) = .
VAR numper : . .
VAR order.of.digit : '
DEF min.int = - 2147483648)
SEQ ,

number := integer »

order.of.diglt := 11
s;rlng [BYTE 0] := 11

aumber = min.int
-- taking care >f *
SEQ

~imit case

«
jo g
(13

string [BYTE 1] = et)
string [BYTE 2 = 12! »
string [BYTE 3 = 1 SN
string |BYTE 4] := '4!' N
! string |[BYTE §} := '7! N
string [BYTE 6] = '4! .
string [BYTE 7] := '8' .
string |BYTE 8 := '3
, string [BYTE 93 := '6!
' string (BYTE 1 = 14!
: string [BYTE 11 = '8! -
1 .
3 128
Nt
\
»

T e " Ta T e e T - P N T S R A A I S N BRI ORI R
W AP AT AP S A BN B L AN A R Sy ~...__.-\ O 5, RO ,,'-\ .

e N e .
M S L YR Rt b

vab. ok -ab. ‘ad. Ak ake o Bl e A% 86, 2k B AR . Qv @ fuv R
(OVY (WTAR Y (YUY e #he 5'a AV » ' 0" o

SE?F
number = 0
SEQ
string [BYTE ll = 0
string [BYTE 11]:= '0
order of.digit := 10
number <
SEQ
number := - number
string [BYTE 1] := '~!
E === number > 0

string [BYTE 1] := ' !
-- building up the actual number
WngE number > 0
S
gtring [BYTE order.of.digit] := (number \ 10) + '0Q'
number := (number / 10) o
order.of.digit := order.of.digit - 1

SEQ i = [2 FOR order of digit - 1)
gtrlqg[[BYTE § 1= J)

-- PROC hex.to.dec (VALUE stringll VAR integer, OK)
- KR FT T T R AT T TR T TR K TR K TR KK AR xx******x*xxxx*xxx***x**x***
--- DESCRIPTION: It accepts a hexadecimal representation of *
--- a number and converts it into an integer number., It *
--- expects the byte[0] of the string to carry the size *
-=-=- information of that "hex number" *
--- USAGE: hex.to.dec ("#00003785",number (valid) *
-—- hex.to.dec ("#1452",number,valid) *
-——- hex.to.dec ("%l $574", number,valid) *
--- ascii.to.dec (hex. strlng number (valid) *
--- REMARK: Returns a boolean value FALSE in OK if the :
*

-—— strlng is not in the correct format.
—m- RARRRK *************************x*********x***************

PRgg hex.to.dec (VALUE string [], VAR integer, OK) =
gnteger = 0
IF

-~ empty strin
strlng {ggTEEO
= LS

-- hex number
stgéng [BYTE 0] <> @

-- starts with '#'
string [BYTE 1] =
VAR Count :

SEQ
QK := TRUE
wount 1= l-
WHILE (Count <= string [BYTE 0]) AND OK
gég Digit :
?%F hexChars = '"0123456789ABCDEF"

BYTE Index] = string [Q%TE Count]

IF Index = [1 FOR hexChars [BYTE 0
hexChars
Digit := Index - 1

TRUE
_ OK := FALSE
1nteger := (integer << 4) + Digit
Count := Count + 1

129
N‘- NN ;. (:.-:.";,, T SO N

RTLIG

~

- .'vvv‘.‘.‘-
g

LA

-- otherwise
string [BYTE 1] <> '#'
OK := FALSE

> _w_B_0

SKIP

-- PROC ascii.to.dec iVALUE stringil VAR integer OKl

mme RRRARAR AR KA KA R AT K e Ao ke T K e k76 e e 5k 7k ok e e ok 7k e e e ok g o e ek o
==~ DESCRIPTION: It accepts an ascii decimal

--- ;egresentation of a number and converts it into an
--- integer number. It expects the byte{Q] of the string
=== to carry the size information of that "ascii number,
-=-- USAGE: ascii.to.dec ("-3785", number,valid

--- ascii.to.dec ("+1452'" number,valid

--- ascii.to.dec ("19574", number,valid

--- ascir.to.dec (string,number valid)

--- REMARK: Returns a boolean value FALSE in OK if the

--- string is not in *the correct format.
e AAAARKRARRTTAAARXRARRAARA AT AR AR AR ARAKAARARARARKARARRRARARARANAR X

% Ok o Ok % O O % O O

PRCC ascii.to.dec (VALUE string [], VAR integer, OK) =
SEQ
integer := 0
IF
-=- empty strir
string . BYTE J] =2
QK := FXLSE

-= number
string (BYTE 0] <> 0
VAR S1i :

gn :
VAR Start : Kk
VAR Length
SEQ
OK := TRUE -
IF _ :
-- negative
string [BYTE 1] = '-!
SEQ.
Sign := - 1
start := 2
Length := string [BYTE 0] - 1

-- positive N
string [BYTE 1] <> '~!
SEQ"
ign := 1
start := 1)
Length := string [BYTE 0]

-- convert to integer
SES Index = [Start FOR Length]
ség Digit :
Digit := string [BYTE Index]
P
f'7t <= Digit) AND ‘Digit <= '9')
integer := (integer * 10) + (Digit - '0')
TRUE
OK := FALSE

- '-I' P o N SN

e s

integer := integer * Si
SKIP : o

-- PROC rem.write.number (VALUE integer 6 root.number

- Te ek e e e kR ke ok ok Tk ke e Sk e e e e e e ek ok ke *************** e s e e g Kk e ke K

--- DESCRIPTION: This PROC outputs a signed integer value to *

--- the screen. It left justifies the number, so that if you * o

--- need it right justified, use the dec.to.ascii and then * N
Y

130

N

.: !
=== the write.strin? routines. * >
=== It uses the following format 0 : ")
[, EE Y - j
——— -234193 -=-=> =-234193 * N,
.- 1496 -==> 149 * S
-~-~ USAGE: write.number (1nteger) *

--- write.number(135) * "
--- REMARK: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS * -
e RRAKARRAKKKRKAKRARKKRKRRARKRARRKRAKRKKRRRRAKAKK R KA KK KKK RKKAAKK v
PROC rem.write.number(VALUE integer, root.number) "
DEF min.int = - 214 483648 : -
DEF max.digits = : %"
VAR number, 3:
VAR crder.of.digit : ~
VAR digit [BYTZ 12! -3
JAR str;ng (BYTE 1 ’l .
32Q o
;5 =1 e
number := integer &
order.of.digit := 11
if o
number = J _ -
send 40, root.number, 'd ", 1,1} “
numoer = 1in..nt _ ?}
send 40, root.number."-21474832648",1,11) ‘A
TRUE Ny
SEQ =
IF - §
aumber < 0 o
SEQ
number := - number :u
string [BYTE 0] := '-! -
TRUE -=-- number > 0 o~
string [BYTIE Q] := ' ! o~
WHILE number > O y
%lglt [BYTE order.of.digit] := (number \ 10) + 'O' S
number := (number / 10) T
order.of.digit := order.of.digit ~ 1 -
SEg 1= r(order of.digit+l) FOR (max.digits-order.of.digit)] oy
strmg [BYTE 3] := digit [BYTE i] Jd
= o+l
send’ (40,root.number,string,?,j)
-- PRCC rem.c.ear.screen JALUE rcot.number) .
cma FERACATRR TR W RORT RN TR R T TRRRICT0A IR I T R KT R KK e e KRN W KK S
--- DESCRIPTICON: It clears the screen and homes the cursor. = o
--- USAGE: clear.screen * s
--- REMARK: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS * ®
e W r I ROR KRR AR R AR AR TR R R T TR KT KR KRR R KRR R R KR R R kK e T ek ke R -
PRCC rem.llear.screen (7ALUE root.numper) = N
AR string BUTE T N
SEG g
string [BYTE 2] := esc --- clear screen sequencs ~
string [3VIE 1 = N
string {BYTE 21 = 'é' ®
string (BYTE 3 = 'J' G
string [BYTE 4] := --- home cursor ﬁ%
strlng BYTE 5 = [-
string (BYTE &] := 'H! e
send (40,root.number,string,0,7): ‘:
\-‘
131 N

N

\

o

-

‘--4---«

AL NN

-- P

VAR string {BYTE 8

ROC rem.pos.cursor iVALUE line, column root.numberl
e ek e kA ok kK Ak R ok ok ok kR ek ok ok ok 7 ok ok e e ok K ok ok e e e ok gk ok ke ek ok
DESCRIPTIOM: Positions the cursor in a specified line and*
column. We have used the ANSI escape sequence *
ESC [Line;Column H. *
USAGE: pos.cursor (8,30) _ *
REMARKl: Valid values for line are 0 up to 24 *
Valid values for column are 0 up to 80 *
REMARK2: Values out of the above range will cause *
unpredictable results. *
x
*

REMARK3: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS
e K e ek Tk R gk A e e R R R R e R e ek R R e R e R ko R 7 ok K ok R e Rk ok

PROC rem.pos.cursor EVALUE line, column, root.number) =

&R X (3YTE 2}, v [BYTE 2]:
SEQ
F
tline < 12} AND (line »=)
SEQ
y {BYTE 0] := '0
.y {BYTE 1] := line + #30
(line >= 10) AND (line <= 24)
SEQ | .
y [3YTE 9] := (line/10) + %30
v (3YTZ 1] := (line\1J) + #30Q
TRUE
SKIP
IF
‘column < 10) AND {column >= 0)
SEQ
X FBYTE 0] = '0°
x [BYTE 1] := column + #30
(coéumn >= 10) AND (column <= 30)
SEQ
X [BYTE O} = /column<10g + #30
% [BYTE 1] i= (column\l0} + 30
TRUE
SKIP
string [BYTE 0] := esc
string {BYTE 1} := '[!
string [BYTE 2] := y [BYTE 0}
string [BYTE 3 =y BYTE 1
string [BYTE 4| := ;'
string [BYTE 3} := x [BYTE 0]
string |BYTE & = X fBYTE 1)
string [BYTE 71 := 'H

--p

send (40, rcot.aumcer,string,0,8):

ROC rem,new.line (VALUE number, root.number)
KARKKIRRKRARRRRKK TR RRKKRRR TR KRR KR ARRKR KR KK T KKK R AR A K
DESCRIPTION: It will skip as many lines as specified in
its parameters list.

USAGE: new.line(4) , .
SEMARKL: Negative numbers will not give any new lines.
REMARK2: IT IS 7O 3E JSED JUST I EMCTE TRANSPUTERS

R A AR AR AR AR AR AR I A RK AR A A R X ARATARAAXARAKRARAARRARXAKRARARK

4 A A A A

PROC rem.new.line (VALUE number, root.number) =
vgg string [BYTE 2]:
S

string[BYTE O cr
string{ BYTE 1 1f
SEQ i"= [0 FOR number] .
send (40, root.number,string,0,2):

-- PROC rem.space iVALUE number, root.numb

LR RS AN AP A

er
R Rk KR gk ok e ok gk ok ek ok gk ok e gk ok ok e gk gk ok e e 3k 7k o e gk e ok e g g ok ok e g sk ok ok e ek ok

132

L T " B .-

P . -ttt T '.\ '.'._ -.'VA.
AP P N e T e

. -
W Wy ¥y

[YA

 2raii%a % At 1% fa At At At Ala'Ata' At 2la At 10 AL AN L a0y ALl atab il Tl sl et b Vit tab b bbb tab Vbt bk b sl tal tat Al tab A el tal Sall chut il e e

--- DESCRIPTION This procedure provides spaces for formatting*
--- a single line. *
--- USAGE: space(8) ,))

-=-- REMARK1l: This routine does not provide an automatic 1f
) --- after reaching the end of the line.

==~ REMARK2: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS
mma Rokkk AR AR KRR R AR AR ek e ek e ke R R ek e gk ok ke ke ko ok ok Kok e ke e ek e '

* ok A X

PROC rem.space (VALUE number, root.number) =
g%R string [BYTE 1]:

string [BYTE 0] := sp
SEQ i"= [0 FOR number])
send (40,root.number,string,0,1):

-- PROC rem.tab (VALUE number root.number)
mee RRRAKRRKRRKRARKAKRKRAKARRRARKRAK AR KR KR AR KKK KA KR A KK AAK KRR AR K

-=-- DESCRIPTICON This procedure provides tabs for formatting a*

--- single line. Each tab is equivalent tc 8 spaces if the *
--- terminal is using the default set up. *
--- USAGE: tab(6) _ _ *
4 --- REMARK1: This routine does not provide an automatic 1lf *
--- after reaching the end of the line. *
3 --- REMARK2: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS x
g mm—m RARRRARRRRAAAAARAAARARKAAAARKRAARAARRARARARARARARRAARAARAARARRAR

PROC rem.tab EVALUE number, root.number) =
gég string [BYTE 1]:
string [BYTE 0] := tab
SEQ i = [0 FOR number] _
send (40,root.number,string,0,1):

-- PROC send(VALUE channel.id dest.transg message|] start.bzte size) '
mme KARKKRARAKKKRRARRRAARA K KRR AKR AR KKK KKK KKK KR KR T KA R K KA R KA K ,
--- DESCRIPTION: It is an ogerating system routine, and it
--- is used to communicate between processors. It builds the *
-=~ header of the message to be sent. It has as parameters *
--- the channel id of the channel which is going to carry on *
--- the communications, the id of the destination transputer *
--- for that message, the start byte and the size of the *
--- message to be transmitted. For every send must exist a *
-=-- receive for that same channel id in the destination *
--- transputer. *
--=- USAGE: send (70,4,message,l,0 . *
--- REMARK: The user must be familiarized with the Operating *
kal
*

--- System Structure before using this routine,
‘ e ARRIKKARRARAARKKRKARRAKKARKKRRARKRARAREKKKRAA KK AR KA KKK AR K

PROC send (VALUE channel.id,dest.transp,message[],start.byte,size)= <
VAR out,message.size, header [BYTE 5]: i

SE%F

size <= 0 --- send from the start.byte all way to the end.
--- this method is valid for messages up to 255 bytes.
--- even for size < 0 it behaves like it was a 0.

TRGgssage.size := (message[BYTE 0] - start.byte) + 1 ‘
message.size := size

header [BYTE 1
header [BYTE 2
header [BYTE 3
header [BYTE 4

message.size<256 --- block.size g# of 256 bytes)
message.size\256 --- + remainder)
channel.id --- any tenth from 40 up to 240
dest.transp _--- destination transputer

out := route,table [dest.transg] :
?ETE.SLICE.OUTPUT (chan[channel.id + out], header,3,1) --- ready flag R
out = 4 N
133 '

- . - N T T e S R L N L L R L B} - - . AT WY . Nt - L L)]
S ST e LT L TN T ._.:._.N.__. AN r:,,-“\“.r\.r".*\.'\.’\' ‘. -.'.,\

SE
gYTE.SLICE.OUTPUT (link4,header,1,header.size))
. BYEE.SLICE.OUTPUT (link4,message,start.byte,message.size)
out =

SE
%YTE.SLICE.OUTPUT glinks,header,l,header.size) .
BYEE.SLICE.OUTPUT 1ink5,message,start.byte ,message.size)
out =
SEQ , ,
BYTE.SLICE.QUTPUT gl;nké,header,l,header.sxze) _
BY;E.SLICE.OUTPUT link6,message,start.byte,message.size)
out =
SEQ . .
BYTE.SLICE.QUTPUT (link7,header,l,header.size) .
BYTE.SLICE.QUTPUT (link7 message,start.byte,message.size)
BYTE.SLICE.OUTPUT (chan[channel.id + out], header,3,1): --- done flag

-=- PROC receive (VALUE channel.id, VAR message[],.message.lgngth[])
ARRRAAARKARARKRARRAK

DESCRIPTION: It is an ogerating system routine, and it
is used to communicate between processors. It receives
the incoming message, and provides as an output parameter
the size of the message just received, The parameter
channel id must have an exact match with the send
operation which originated that message.
JSAGE: receive (70,message.in,size) , .
REMARKL: The user must be familliarized with the Operating
System Structure before using this routine.
REMARKZ2: Notice that the message.length output parameter,
must be a unity array of integers, while the message

itself must be declared as an array of bztes. A
REAKAKARAKAAKKARKARKRAAKXKAARARKAAAARKARAAARRRRAKRARAARAARKRAKR A RAkARAKAR

Aok Sk N Ob ok Ok b F k% %

PRgg receive (VALUE channel.id,VAR message[], message.length{])=
SORD.SLICE.INPUT ﬁchan[channel.id],message.length,o,

1
BYTE.SLICE.INPUT (chan[channel.id ,message,l,message.{ength[ol):

-- utilities.occ _
~= PROC rem.tick.to,time iVALUE start, stop, board.type, root.number)
mme RRKAARRRAR KA R AR R KR AR KRR KA KKK KA K e e A T e Tk Fe e e ¢ e ok e e e ok e
DESCRIPTION: It expects the board type which can be
board.type = 0 ----> O0OPS (VAX Vﬂgg
board. type 1l ---=> BO001l (T414:12.5 MHz)
board.type = 2 ----> B002 .
board.type = 31----> B003 2T4l4:15 MHz - high pr;g
board. type 32----> B003 (T414:1 SMHz - low pri
board.type = 4 ----> B004 '
anc 2 signed integers regresentin some tick values
obtained by an assSignment of the fype TIME ? time.var |
It then outputs the corrected elapsed time in hours, min,
sec and msec, already taking into account the fact that
the timer wraps around when it reaches MAXINT or MININT.
USAGE: tickk.to.time (timel,time2,31) . ' \
REMARK: Aithough it takes care of the wrapping, it won't *
keeg track of the number of times you have completed one *
full cycle of the timer. In order to solve this problem *
ou should record roughly the start time. For example, in*
the VAX/VMS, the full cycle of the timer is 7.2 min, so
if you get the elapsed time of 5 min 7 sec 320 msec and *
you have ?ot.a rough total time of 12 minutes, then the *
real total time is 12 min 19 sec 320 msec. :
*

REMARKZ: IT IS TO BE USED JI'ST IN REMOTE TRANSPUTERS
a o Kok sk Ak s A A sk kA e e R A ek sk 7 e Rk 7k Tk T e e sk gk e ok R K A sk ek

wuwunwni

B b D 3P I 2 b 3 I

PROC rem.tick.to.time (VALUE start, stop, board.type, root.number) =
-+ constant definitions

134

-

r
&,
&
.
DEF vax.sec ~ =10000000 --- hundreds of nsec/second .
DEF vax.mili = 10000 --- hundreds of nsec/milisecond o
DEF b00l.sec = 625000 === # of 1.6 usec/second ,
DEF b00l.mili = 625 --- # of 1.6 usec/milisecond -
DEF bOO3h.se¢ = 1000000 --- # of usec/second &
DEF b0Q3h.mili = 1000 --- # of usec/milisecond
DEF b003l.sec = 15625 --- # of 64 usec/second -
DEF b0031.mili = 16 --- # of 64 usec/milisecond .
DEF max.number.of.ticks = 2147483648 : --- maximum integer (2%*31) 'ﬂ
VAR elapsed.tick : -
VAR factorl, factor2 _ -
VAR msec, tot.sec, sec, min, hr <
SE oy
%F Fv«
doard.type =) -~-- VAX VMS i
SEQ :
zactorl := vax.sec -
factor2 := wax.milii -
board.type =1 ~-- BOO1
SEQ N
actorl := b0Ol.sec o
factor?2 := p00l.mili .
poard.tyse = 2 -=-=- 3002 :
SKIP ~~= not implemented .
board.type = 31 ~=~ B003 in high priority
L
%actorl := b003h.sec
factor2 := b003h.mili
board.type = 32 ~-- B003 in low priority -
SE -
%actorl := b0031l.sec p
factor2 := b0031.mili b
board.type = 4 --- BO04 j3
SKIP === not implemented ~
e%apsed.tick := stop ~ start :;
I .
elagsed.tick <0 . . P
T‘R&:‘apsed.uck := elapsed.tick + max.number.of.ticks 74
ETTSeY -
tot.sec := eslapsed.tick/factorl <
hr = tot.sec/36Q0 -
min = (tot.sec\3600)/60)
sec = tot.sec\60 °®
msec = (elapsed.tick\factorl)/factor?2 T
-- output time to screen R
rem.write.number (hr,h root.number) 3
send 140, root.number," ar ",1,3) -3
rem.Wwrite.numoer (min,root.number) o
send (40, rcot.number," min ",1,0 A
rem.write.number(sec,root.number ®
send (40,root.number," sec ",1,0 o
rem.write.number(msec,root.number) ¢
send (40,root.number," msec',1,0): =
2
-- PROC dump (VALUE begin.address,K count, root,number ¥

——— *******g*i********x**********k******&*******k**** KT ok e sk ok e

--=- DESCRIPTION: This procedure dumps the memory starting at *
--- the given 'begin.address". The value for the *

.

135

-~
o

--=- "begin.address" can be either in hex or decimal. _
===~ The count value determines how many words in memory will
--- be retrieved.

--- USAGE: a) dump (#80003540,100)

--- b) dump (1024,48)

--- c) dump (-5113,1024)

-~=- REMARK1l: When specifying the count value remember that
--- the retrieval is done by words, not bytes!t!!

--- REMARKZ2: If count is not a multiple of 4 it will use the
--- closest ugper multiple.

--- REMARK3: }

--- accepted, will give you no output.

--- REMARK4: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS

egatives or zero values for count although

% b Ok F ok % Ok Ok b b O % %

C Zump VALUE begin.address, count, roct.number) =
JAR werd.r=ad:

VAR ntex.value [10], hex.addr[19]:

JAR 3adress, aiign, times:

times := 0 .
rem.new.line(l, root.number)

address := segin.address
- 3ilgning 3 given address
i.13n = 3aaressh 4

align <>)
agéress := address - align

TRUE
SKI?

NHI;S times < caunt

jo¥ ol
send (40, root.number,"address ",1,0)
dec.%0.hex {address, hex.addr)
send (40, root.number,hex.addr,1,0)
send'é40 root.number," =--> ',1,0)
558 1= [0 FOR 4]

EQ

GETWORD (word.read, address)
dec.to.hex (word.read,hex.value)
send {40, root.number,hex.value,1l,0)
rem.space(2,root.number)
times := times + 1

SKIP

acddress := address + 16

rem.new.line(i,root.number)

ZPI2:

FRCC <transfer,rate (VALUE start stgp,board,tyge‘nr.of.bytgs,VAR rate)
=

o TRk R A T TR TR TR R e T o T T K R R R R K R R R RRRKERARKRKRK KKK

- CESCRIPTION: It is basically the same routine as *
- tizk.to.time, with the only difference that it returns a =
- raze wvalue in Xbits/sec instead of a time value. x
P E: transier.rate :timel,time2,b 31,4096, rate) =

=

-

K: For Zurther 1afosrmaticn rerfer to routine
- TLCX.TD.T.ime

CC transfer.rate (VALUE start,stop,board.type,nr.of.bytes,VAR rate) =
- ccnstant definltions

JEF vax.sec =10000000 : --= hundreds of nsec/second

CEF bd0l.sec = 825000 : --- # of 1.6 usec/second

CEF b003h.sec = 1000000 : -~-- # of usec/second

ZEF p2031.sec = 15625 : --- # of 64 usec/second

CEF max.numper.of.ticks = 2147483648 : --- maximum integer (2**31)

-- variable declarations
VaR elapsed.tick

5 1 2

A

. e v e e
2% "y Te 2 N
'

v’

-
N

..'-""l'

® 5

)

; . ‘eid 9.k caabahaty st A e e Atk At e AR AT LNtk 08 et o ta s hat
‘g bty v Sttty ek Sl ol ol 0ol *ad ta) 4 W T TR < facph

) VAR factor : === to convert ticks to seconds

9
o
v SEQ ,
" §%apsed.t1ck := stop - start
elapsed.tick < 0 _ '
- elapsed.tick := elapsed.tick + max.number.of.ticks
. TRUE
S SKIP
. E- selection of correct factor iaw the board
board.type = 0 -=-~- VAX VMS
factor := vax.sec
v
[hoard.type =1 --= BOO1
- factor := b00l.sec
. board.type = 2 --- B002,
- SKIP --- not implemented
board.type = 31 =--- B003 in high priority
. factogp:= bC0O3h.sec
‘: board.type = 32 -=-=- B003 in low priority
. factor := b0031l.sec
: board.type = 4 --- B00O4
- SKIP -=- not implemented
o p rate calculation
L board.type = 32)
: rate := ((nr.of.bytes*8)*factor)/(elapsed.tick*1000)
s T GE' operation is done this way to keep precision ok!
) R
rate := ((pr.of.bgtes*a *(factor/1000))/elapsed.tick ,
. --- operation is done this way in order to not exceed maxint
-=- on_the numerator. _
) --- mglﬁlplg b¥ 8 due to 8 bits per byte _ ‘
¥ -=- divide by 1000 to have the tranfer.rate in kbits/sec
s
: SKIP:
~-- PROC operating.system
PROC operating.system =
-- PROC input.nandler
PROC input.handler =
-- variable and constants declarations
VAR header(Q [BYTE 5],
headerl [BYTE 51,
header2 [BYTE 5],
b header3 [BYTE S},
@ buffer.inQ [BYTE max.block.size],
[~ buffer.inl [BYTE max.block.size],
9 buffer.in2 [BYTE max.block.size],
\ buffer.in3 [BYTE max.block.size],
N block.size0[1l], outQ,
N block.sizel[l}, outl,
) block.size2|l], out2,
* block.size3[1], out3:
)
A SEQ
-- initializing the buffers
SEg i = [0 FOR max.block.size]
7 EQ
- 137
2
;?;fa’;f:’;f:'uf‘fQTQfIfJ’Lff’{’5’:*£’£f{f£’{f£'ifZf\f'“" ’""3’5“§‘3"2“-’3'z“'“"Zfi“i‘i”:””°f*"C“'*'“'“'“'“3

-3

- -

2% a A

.
.
.
.
v

'

sat Sab Vel Sad et Yan ¢

valatat taatalatat tav,”

buffer.in0
buffer.inl
buffer.in2
buffer.in3

9 cabatalt et 'ate‘ala’ale’

BYTE
BYTE
BYTE
BYTE

O

SKIP

AR
WHILE TRUE
~-=- listen to 1linkO

SEQ
-- rece1v1n? the
BYTE.SLICE.INPUT

o o0 20 on
nwwnn
[

header .
(1ink0,header0,1,header.size)

-~ decoding{the block size

block.size

-~ bufferln? the
BYTE.SLICE.INPUT

IF
-~ the message
headero [BYT

-- finding
outd :=

-- outputing to

:= ((256*header0[BYTE 1])+headerO[BYTE 2})

message , ‘
(1ink0 ,buffer.in0,1l,block.size0[0])

is to be b{passed
r

<> this ansputer
the best link to

output that message

route.table [header0 [BgTE 4]

the required link

--- reguest flag thru chan 4, 3, 6 or 7
?;TE SL;CE OUTP T(chan[outo] header0,3,1)
outC = 4
SEQ
BYTE.SLICE.QUTPUT éllnk4 ,header0,1, header.size)
BYTE.SLICE.QUTPUT (link4,buffer. an 1,
block.size0[0])
outd = 5
SEQ - .
BYTE.SLICE.QUTPUT Sllnks ,header0,1,header.size)
BYTE.SLICE.OQUTPUT (link5,buffer. an 1,
block.size0[0])
out0 = 6
SEQ .
BYTE.SLICE.OUTPUT gllnk6 ,header0, 1, header.size)
BYTE.SLICE.QUTPUT (linké,buffer. an 1,
block. 51260[0])
outld = 7
SEQ .
3YTE.SLICE.QUTPUT §l¢nk7 ,header0,1,header.size)
BYTE.SLICE.OUTPUT (link7,buffer. an 1,

block. SlzeO[O])

~=- release fla

BYTE.SLICE

-=- the message
headaro {BYT

asszn

WORD.SLIC

assin

BYT .SLIC

WHILE TRUE
-- listen to linkl
SEQ
-- rece1v1n? the
BYTE.SLICE.INPUT

I--I f-f'

NP , “r , f [1. Yot ._ el

" ;Aj. 2

N r.

.OUTPgT(chan[outO] header0,3,1)

is for this transputer
= this.transputer

the size of the message (block size0[0])
OUTPUT (chan[headerO{BYTE 3]
block. sxzeo 0,1)

the message itself
.QUTPUT (c an[headerO[BYTE 3]],buffer.in0,1,
block.size0[0])

header
(linkl,headerl,l,header.size)

138

-J' -_‘- o r’ : -P -_f"' \J'\J'_'n’.{'\{' —V”.\‘."\’\"", -

RS S NN SN

-- decodin?[the block siz

block.sizel (0]

-- bufferin

e
:= ((256 * headerl[BYTE 1])+headerl[BYTE 2])

the messa

e
BYTE.SLICE.INPUT (link?,buffer.inl,l,block.sizel[o])

IF

== the message

headerl [BYT
SEQ

is to be bypassed

4] <> this.transputer

-- finding the best link to outgut that message

outl :=

route.table [headerl (B

TE 4]]

-- outputing to the required link

--- request fla

thru chan 14, 15, 16 or 17

BYTE.SLICE.QUTPUT(chan{10+outl], headerl, 2, 1)
IF
outl = 4
SEQ .
BYTE.SLICE.OQUTPUT élink4,headerl‘1,header.s;ze)
BYTE.SLICE.OQUTPUT (link4,buffer.inl,l,
block.sizel(0])
outl =5
SEQ
SYTE.SLICE.QUTPUT SIinRS,headerl,l,header.s;ze>
BYTE.SLICZ.OUTPUT (link5, nuffer.:ni,l.
olock.sizel[0])
outl = 6
SEQ , _
BYTE.SLICE.QUTPUT gl;nke,headerl,l,header.szze\
BYTE.SLICE.QUTPUT (link6,puffer.inl,Kl,
block.sizel[0])
outl = 7
SEQ , o
3YTE.SLICE.QUTPUT él;nk?,headerl(l,header.SLZe)
BYTE.SLICE.OUTPUT (link7,buffer.inl,l,

block.sizel[0])

-~=- release fla

BYTE.SLICE.
== the message
4

headerl [BYT
SEQ

-~ passing
oy

WORD.SLIC

- oassing
A

BYTE.SLIC

WHILE TRUE
-~ listen to link2
SEQ .
-- receiving the
BYTE.SLICE.INPUT

-- decodin
block.sizeZ([0]

-- bufferin
BYTE.SLICE. INPUT

IF
== the message
heggerz (BYT

.QUTPUT (chan(headerl

OUTPgT(chan[10+outl],headerl,3,l

is for this transputer
] = this.transputer

the size of the message (block.sizel[0])
iBY‘I‘E 317,

block.sizel,0,1)

the message itself

.QUTPUT (chan(headerl (BYTE 3]],buffer.inl,

1,block.sizel(0])

header
(link2,header2,1,header.size)

the block size

((256 * header2[BYTE 1])+header2[BYTE 2])

the messa

e
(linkg,buffer.inz,l,block.sizeZ[O])

is to be bypassed

4] <> this.transputer

-- finding the best link to outgut that message
out2 := route.table [header2 [BYTE 4]]
139
T T T e e S S e

o~ AT s s

"3 a4 A B0

. .
nJ

? PIRSSN

P XA

s &t ¢ &

2eILL S

-

MO

e Bl .“ -" ..' .

SYSASS

Te"a?s%2%2D

-- outputing to the required link
--- request flagrthru chan 24, 25, 26 or 27

?gTE.SLICE.OUTP
out2 = 4

SE
gYTE.SLICE.OUTPUT
BYTE.SLICE.OUTPUT

ou§§Q= 5
BYTE.SLICE.QUTPUT §1ink5,header2,l,header.size)
BYTE.SLICE.OUTPUT (link5,buffer.in2,!,
block.size2(0])
outz =
SEQ ,
3YTE.SLICE.QUTPUT (linké,header2,l, 6 neader.size)
BYTE.SLICE.OUTPUT (linké buffer.:in2, 1,
plock.sizeZ(0])
Qut2 = 7
SEQ , _
BYTE.SLICE.OUTPUT gl;nk7,header2(l,header.s;ze)
BYTE.SLICE.OUTPUT (link7,buffer.in2,l,

--- release fla

(chan{20+out2] ,header2,3,1)

Elink4,header2‘1,header.
link4,buffer.1in2,1,
block.size2({0])

block.size2{01)

BYTE.SLICE.OUTPgT(chan[20+out2},headerz,E,l)

-~ the message is for this transputer
heggerz (BYTE 4] = this.transputer

-- assing the size of the message (block.size2[9])
.QUTPUT (chan(header2 [BYTE 3]]

WORD.SLIC

block.sizeé,o,l)

-- passing the message itself

BYTE.SLICE.OUTPUT (chan(header2 {BYTE 3]],ouffer.in2,

WHILE TRUE

~=- listen to link3
SEQ o
-- receiving the header

1,block.s1ze2{0}])

BYTE.SLICE.INPUT (1link3,header3,l,header.size)

-- decoding the block size
block.sized|

-~- buffering the messaqge

BYTE.SLICE.INPUT {linkI, buffer.in3,l,block.size3(0]]

IF

0] := ((256 * header3[BYTE 1])+header3{BYTE 2})

)
/

-= the message4%s to be bypassed

header3 [BYT
SEQ

<> this.transputer

-- finding the best link to_output that message

out3 := route.table [header3 (B

YTE 4]]

size)

-- outputing to the required link

-, --- request fla
0 IF
out3 = 4
. SEQ
; YTE.SLICE.OUTPUT
s BYTE.SLICE.QUTPUT
Y
N outl = 5
N SEQ
YTE.SLICE.OUTPUT
BYTE.SLICE.QUTPUT
g 140
P
3
y o
C4
7
../r{rf A :‘.v.-°'.r a""w"(' "'.—”.r;'.r(\-."f'.-.:i':.-:r:;.-:; .

8 thru chan 34, 35, 36 or 37
BYTE.SLICE.OUTPUT (chan[30+out3], header3,3,1)

NN - . . et s .
M A T e L el e e

51ink4,header3(1,header.size)
link4,buffer.1in3,1,
block.size3[0])

21ink5,header3‘1,header.size)
linkS,buffer.in3,1,

''''''''

outd = 6

SE
gYTE SLICE.OQOUTPUT
BYTE.SLICE.QUTPUT

out3 = 7
SEQ
BYTE.SLICE.QUTPUT
BYTE.SLICE.QUTPUT

E
E

--~ release fla
BYTE.SLICE.OQUTP

-~ the messa
Head8r3 [BYTE

ge is

BYT

i)

-=- PROC output.handler
PROC output.handler =
-~ local varlable declarations

-- passing the size of the messa
WORD.SLICE.QUTPUT (chanl[header3

block.size3{0])

1link6 header3 1, header.size)
linkeé, ‘buffer.in3
"block. 51ze3[0])

1link7,header3 1,header.size)
1link?7, ‘buffer.in3
"block. 51ze3[0]

8T(chan[30+out3] header3,3,1)

for this transputer
this.transputer

e (block.size3{0])
EBYTE o]]
block.size3,0,1)

the message itself
OUTPUT (c an[header3l[BYTE 317, buffer in3,

block.size3[0]) :

VAR flag BYTE 2]:
VAR £1ags BYTE 2].
VAR £lagé6 [BYTE 2]:
VAR flag7 {BYTE 2]:
?AﬁHILE TRUE
ALT i = EO FOR max.io.channels]
chan [(10*i) +4] ? flag4 [BYTE 0] --- for link4
WHILE %ga; .SLICE.INPUT (Chan (10*i) +4],flag4,0,1)
ALT j = EO FOR max.io.channels
chan [{10%*j) +5] ? flagS [BYTE -=-- for 11nk5
HILE %ggE SLICE.INPUT (chan (10*3) +5],flag5,0,1)
ALT k = EO FOR max.io.channels]
chan 10*k) +6] ? flagé [BYTE --- for 11nk6
WHILE %gSE.SLICE.INPUT (chan (lO*k) +6],flag6,0,1)
ALT 1 = EO FOR max.1io. channels]
chan [(10*1) +7] ? flag? === for 11nk7
BYTE.SLICE.INPUT (chan (10*1) +7],£lag7,0,1):

;EQmain body of the operating system

-- receiving the rouE%ng table

route.table[0 ~-- output link to transp #0
route.table{l] 1= tl ~== output link to transp #l
route.table|2] = t2 ~-=- output link to transp #2
route.table|3] 1= t3 == output link to transp #3
route.table}4‘ = t4 -~- output link to transp #4
route.tablel5 := t5 ~~- output link to transp #5
route.table(6] 1= t6 --- output link to transp #6
route.table{7] 1= 7 --- output link to transp #7
route.table[8 = t8 --- output link to transp #8
route.table{9]. = t9 ~-= output link to transp #9
route.table[10] = tl10 ~-- output link to transp #10
route.tablel1l] := tl1l ~-- output link to transp #l1
route.table{12 1= 12 --- output link to transp #12
route.table[13 := tl13 --- output link to transp #13
route.table(14] = tl4 --- output link to transp #l4
route.table[15] = tl -~-=- output link to transp #15
route.tablef{1l6} := tl6 -=-- output link to transp #16
route.table{17]} = t17 --- output link to transp #17
PAR
output.handler
input.handler:
ha
142

........ AT AN I N e Tt S T IO

> e e . . e ,'..-- .~" -I.". . R --.; ..-_' A et ety T et . . R atE T, . At
S N N O N e A S R R TR R o0 Wt

2R

APPENDIX F

THE EVALUATION PROGRAM FOR THE OPERATING SYSTEM
(EVAL_OS.TDS)

PROGRAM os.evaluation
os.evaluation
SC PROC hostproc _
PROC hostproc(CHAN A,B,C,D,E,F,G,H,VALUE this.transputer,route.table)
OC hostproc(CHAN A,B,C,D.E,F,G,H,
VALUE this.transguter,
t0,cl.c2,t3,t4,t5,t6,t7,t8,t9,
%10,211,£12,%13,+:14,t15,¢£16,t17) =

-=- root_os.%ds
—mm RORR R R R R T ke T e e e ek T e sk ko ok 7k e ok e T ok ok e e e T e e ok e ok e T e e ok e ok 7k

--- In this onlace should be imbedded tHe filed fold *
--- ROOT_0S.TDS, which contains the source code of the *
--- operating system <or the root transputer. ®
==~ It s Zully documented in ippendix D. *

e IRAK AR A A RARRAAXAARARARAAAAARAARRAAARARAAARARAAARRARAAARRARARR

-- PROC user.interface
PRCOC user.interzace =
-- constant and variable declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 1280, 2048, 4096]:
DEF nr.of.sizes = 14: --- # of entries in the above table
JEF marblock.size = 4096: --- max_£from the above table
VAR buffer0 [BYTE maxblock.size + 1
bufferl [BYTE maxblock.size + 1
buffer2 [BYTE maxblock.size + 1
buffer3 [BYTE maxblock.size + 1

’

’

’

VAR run . --- number of runs made (RUN %) .
VAR answer [BYTE 2] : --- user's choice in continue or quit
VAR repetition : --- number of times to carry each xfer

VAR dummyO(1],dummyl(1],dummy2{1],dummy3[1]

-- PROC write.header
PRCC write.,header =
--;Ewrites ~he header of the output table
Q
run := run + 1
clear.screen
write.string 2”RUN #M)

write.number (run)
space(3)
write.string ("CPUs IDLING ")

space(2) ‘
Wwrite.string ("8YTE.SLICE.input/output’)

space(2; o
write.string ("Repetition = ")
write.numper (repetition)

new.line(2)

write.string 2"5‘”55 10UT 1IN 20UT 2IN 30UT 3IN ")
write.string ("40UT 4IN 4INOUT")
new.line(l):

-= PROC transfer
PROC transfer =
-- variable declarations
VAR block.size,
actual.rate,

143

R PRI AN

o)

RSPy

chO[BYTE 2] ,chl{BYTE 2],ch2[BYTE 2],ch3[BYTE 2],
« time0[4
timel[4

gsg i = [0 FOR nr.of.sizes]

-- making the table after each io operation

‘ block.size := sizetable(i]

b write.number (block.size)

Yy tab (1)

4 -- output to one channel
actual.rate := 0

SEQ j = [1 FOR repetition]
SEQ

send (90,9,%a "*,1,1)
> TIME 2 *lmeof01
, send (90,),burferd,l,olock.size)
: TIME ? timel[9]
X ransfer. rate(time0(0] timel([Q],1,block.size rate)
actual.rate := ((actual.rate * (3-1)) + rate)/j
SKIP
Wwrite.numpber (actual.rate)
cab 1)

Zrom one channel
ta = g)
1 FOR repetition]

send (90,0,”a *1,1)

TIME ? time0[0

recaive (50, buffer0, dummy0)

TIME ? tlmel[O]

transfer.rate(itime0(0],imel[0],1 ,block.size, rate)

K. SKIPactual rate := ((actual rate * (j 1)) + rateS/j
write.number (actual.rate)
X tab (1)
. -- ocutput to two channels
actual rate := 0
SES j = [1 FOR repetition]
EQ
AR
send §90,0,”a no1,1)
send (100.1,%a ",1,1)
TIME ? timed(0]
PAR

sendé90,3 ,bufferd,l block.size)
send(100 bufferl 1,block.size)
TIME ? timel[O0]

transfer. rate(tlmeO[O tlmel[O] 1,block.size rate)
actual.rate := ((actual.rate * (3-1)) + rateS/j
SKIP
; write.number (actual.rate)
tab 1)

-- input from two channels
actuax rate := 0
SEg [1 FOR repetition]

send 590 o,"a ",1,1)
send (100,1,"a " {,1)
TIME ? timeO[0]
PAR
rece1ve$50 ,bufferq, dummyog
recelve (60 bufferl,dummyl
TIME ? timel(Q]

144

DI

transfer.rate(time0[0] timel[0],1,block.size rate)
actual.rate := ((actual.rate =* (j=1)) + rate5/3

write.number (actual.rate)
tab (1)

== output to three channels
actual.rate := 0 o
SEgEJ = [1 FOR repetition]

Bar
send (90,0,"a ",1,1)
send (100,1,"a “,l,lg
send (110,2,"a ",1,1
TIME ? time0Q{0Q]
PAR
send(90,0,buffer0,l,block.size)
send(100,1 ,bufferl.l block.size)
send(110,2 buffer2,l,block.size)
TIME ? timel{0] '
transfer.rate(time0[0], timel[0],1 block.size rate)
KIPactual.rate := ((actual.rate * (j-1)) + rateS/J
S
write.number (actual.rate)
tab (1)

-- input from three channels
actual.rate := 0 o
SEQ j = [1 FOR repetition]
SEQ
PAR
send (90,0,"a ",1,1)
send (100,1,"a “,l,l;
send (110,2,"a ",1,1
TIME ? timed(0]
PAR
receive(50,buffer0, dummyQ
receive(6Q0,bufferl, dummyl
receive (70 buffer2,h dummy2
TIME ? timel[Q]
transfer.rate(time0[0]

timel{C],1,block.size rate)

Dactual.rate := ((actual.rate * (3-1)) + rateﬁ/j
SKIF
write.number (actual.rate)
tab (1)
-- output to f?our channels
actual.rate := 9 ‘
SEQ 3 = [l FOR repetition]
SED
PAR
send (90,0,"a ",1,1)
send (100,1,"a ",1,1
send (110,2,"a ",1,1
send (120,3,"a ",1,1
TIME ? timeQ[0]
2AR

send(90,0,buffer0,1 ,block.size)

send(100,1 bufferl,l,block.size

send(110,2,buffer2,1,block.size

ser.d(120,3 buffer3,l,block.size
TIME ? timel[O0]

transfer.rate(time0(0] timel[0],1 ,block.size rate)
SKIPactual.rate := ((actual.rate * (3-1)) + rate’/j
write.number (actual.rate)
tab (1)

-- inEut from four channels
actual.rate := 0

145

. e e T N e e e e R s AN s T e e
T S A S A L W T VTS
(A B » n . B » -

-~ = .
|

VRS

fy N T ey

)
4

8 _f

P)
S~

n“‘a".l-" o RN

. . . . ga.aiar gav By ca i a e e g
48t RN . 'ad b : . At A At

SEQ j = [1 FOR repetition]
ck p

AR
send (90,0,"a ",1,1)
send (100,1,"a ",1,1
send (110,2,"a ",1,1
send (120,3,%a ",1,1
TIME ? time0O{0]
PAR
receive(50,buffer0, dummy0
receive(60,bufferl, dummyl
receive(70,buffer2, dummy2
receive(80 buffer3, dummy3
TIME ? timel[OQ] .
ransfer.rate(time0[0],timel[0],1,blo
actual.rate := ((actuai.rate * (3=1))
SKIP
write.number (actual.rate)
tab (1)

ck.size rate)
+ rateS/j

-- all output and input in parallel
actual.rate := 0

SEQ j = [1 FOR repetition]
2

PAR
send §90,0,”a “, 1,0
send (100,1,"'a ",2,1
send 2110,2,“3 ”,1,1§
send (120,3,"a ",1,1

TIME ? timeO([0]

PAR '
send(90,0,buffer0,1,block.size)
send(100,1,bufferl,l block.size
send(110,2,buffer2,l block.size
send(120,3,buffer3, 1, block.size
receive(50,buffer0, dummyO
receive(60,bufferl, dummyl
receive(70,buffer2, dummy2
receive (80 buffer3, dummy3

TIME ? timel{0] . ,

transfer.rate(time0[0],timel[0],1,block.size rate)

SKIPactual.rate .= ((actual.rate * {j-1)) + rate/j
write.number (actual.rate)
new.line(l)

new.line(1l):

-- main program

SEQ .
-- some variables initializations
run :=
answer [BYTE 1] := 'z'
repetition :=

-- initialization of buffers with bytes
SEgEk = {1 FOR maxblock.size + 1]

uffer® [BYTE k] := 'O
bufferl [BYTE k] := 'l!'
buffer2 [BYTE k = 12!
buffer3 [BYTE k = '3

SKIP

-- program explanation
clear.screen

write.string (" This is an Evaluation Program for the Transputer")
new.line(2)

write.string (" The table presents transfer rates in Kbits/sec")

146

4a @4 Wi
Rl Lt

PN A S

L2

'5‘-;\‘.3 l‘

y 4

i)
s
@

T N NN

PO R AR g *

new.line(1)
write,string ("
new.line(2)
write.string ("
new.line(1)
write.string ("
new.line(1l)

-- validate ans
WHILE ((answer
SEQ

write.string ("

(evboar4 ?

" '

SRRV ANY]
m()r,n
T
(12
33
LIS

WHILE

SEQ

arsver

eyooar
'Jc;:a-
d sCcreen
SCreen

aAni~er

L4 !

for 14 block.sizes in 9 channel combinations
TYPE (Y)ES
(N)YO

~—

if you want to use it ")

if you want to quit ")

wer
[BYTE L] <> ‘Y') AND (answer [BYTE 1] <> 'N'))

’pe ¥our choice ")
ans‘he"

saer,
a -
8YT

[0}

o make the next loop be executed
"N

(N3O ')

3YTE L - T <>

(ZYES or

) AND (answer [BYTE 1]

" To
d ° answer
Lze answer’
'a

! answer [BYTE 1]

éou want another run ?
YTE

b

screen{4] ! 'a’
new.*‘nﬂﬁ‘)

PAR
send (
send (
{

Bl el 2l \D

0,
00
10,
120,

(S]
t WD
[t e
P 1

en
ng ("

la B]

2.0

PAR
operating.system
user.intérface:

e % IR
- v’ >, t'
\...n PSRN

answer,l,l

.answer,1,
2 answer, 1,
1,

)

L)

1)
3,answer,l,1l)

zhe program

Press reset button to get pack to VAX/VMS ") :

147

!._

> e b3 st

I\ _SFPParare)

“__"- 3

#vffxﬁ

== SC PROC transfer0.b003

== PROC transfer0.b003 (CHAN A,B,C,D,VALUE this.transputer,route.table)

PROC transfer(0.b003 (CHAN a&,B,C,D

4 ’

VALUE thls.transguter,
t0,tl,t2,t3,t4,t5,t6,t7,t8,t9,
t10,t11,t12,t13,t14,t15,tl6,tl7) =

-- remote_os.tds
- KR K T T TR KT T T T T T T T T SR TR 7K 5K T e e e 3K T T she ke e v ke Tk Tk e ke ke e T T T ke K ok v 7k Tk ok ke ke Rk

--- In this place should be imbedded the filed fold *
--- REMOTE_05.TDS, which contains the source code of the *
- oge:atln system for remote transputers. x
--- It is fullv documented in Appendix E. *

- RRTET R R TR R TR KRR AR R AR T TR TR K KRR KRR T R TR T T TR o AR K Rk e e ok

-=- 2ROC user0
PROC user(Q = .

-- constants and -arilables deciarations

OEF sizetable = TABLE [1, 2, 4, 3, le, 32, 64, 128, 256, 512,

. 1024, 1280, 2048, 4096]:

DEF nr.of.sizes = 14: --- # of entries in the above table
DEF maxblock.size = 4096: --- max from the above table ‘
7AR answer [BYTE 2§ -== user's choice in continue or quit
JAR dummyOll’
“aR repetlilon

-- PROC <transferd
PROC transterQ =
-- variable Jeclarations
VAR block.size,
ch0 [BYTE 2]:
VAR bufferd [BYTE maxblock.size + 1]:

SEQ
-= initialization of buffers
SEg k = [1 FOR maxblock.size + 1]

EQ
buffer0 (BYTE k] := '0'
SKIP

SEgEi = [0 FOR nr.of.sizes]

lock.size := sizetable([i]
-- input and output handling
== input from one channel
SEQ j = [1 FOR repetiticn]

SEQ
receive (90,ch3,dumm20)
receive (20, buffer0,dummy0)
SKIP

-- output to one channel
SESEJ = [1 FOR repetition]
Q

receive /20,ch0,dummyQ)
send(50, .0 bufferQ,l block.size)
SKIP

-- input from two channels
SEgEj = [1 FOR repetition]
Q

receive égo,cho,dumm 0)
SKIPrecelve 90,buffer0, dummyO)

-= output to two channels
SESEJ = [1 FOR repetition]

Q
receive (90,ch0,dummy0)

148

. B T e S S . -
- PR Yy s e e ~
YA O S S

. .t .«_'- - -A'-
S T AT RSN NG e

“a ™

Ny

e
PR, JUCAARR

. e . .
L

IPsend(SO,lO,bufferO,l,block.size)

-- input from three channels
SEgEé = {1 FOR repetition] ;

receive é90,ch0,dumm50)
SKIPrecelve 90,buffer0, dummy0)

~- output to three channels
SEgE% = {1 FOR repetition]

receive (90,ch0,dummy0 '
SKIDsend(SO,lO,bufferO,l,b ock.size)

-~ input from four channels
SEgEj = [1 FCR repetition]

receive S90,ch0,dumm 0)
receive (90,buffer0,dummy0)

~-- output to four channels
SEQ ; = [l FOR repetitionj
SEQ
receive (90,ch0,dummy0C
SKIPsend(SO,lO,bufferO,l,b ock.size)

-- all output and input in parallel
SEgEJ = [1 FOR repetition]

;ggeive (90,ch0, dummy0) k
receive (90,buffer0,dummy0)
send(50,10,buffer0,1l,block.size)
SKIP
SKIP:

-= main program
SEQ "
repetition := 20
answer [BYTE 1] := 'Y!
WHILE answer|BYTE 1] = 'Yy!
SEQ
transter?
receive (90,answer,dummy0)

PAR _ :
cperating.system ’
userQ :

149

F A)

N NN)

-- SC PROC transferl.b003 .
== PROC transferl.b003 (CHAN A,B,C,D, VALUE this.transputer, route,table)
PROC transferl.b003 (CHAN A,B,C,D,
VALUE this.transputer,
t0,tl,t2,t3,t4,t5,t6,t7,t8,t9,
t10,t11,¢12,¢t13,t14,t15,t16,t17) =

-- remote_os.tds

mmm RERRKTR KA AR KA R TR TR A A A K Rk ok o K ok ok ok e ks ek ok ok ok
==~ In this place should be imbedded the filed fold *
--~ REMOTE_0S.TDS, which contains the source code of the *
--- cperating system for remote transputers. ol
--~ It 1is fully documented in Appendix E. *
mme RRRRAKRRRRRAKR AR KRR RIRAK KKK KRR A KK KA R A ok ok ok ok e ek o ok ok ke ko ok

-~ PROC user!l
PROC userl = oo i .
~- ccnstants and variables declarations

DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 1280, 2048, 4096]:

JEF nr.of.sizes = 14: ~-== # of entries in the above table

CEF maxplock.size = 4096: --- max from the above table ‘

7AR answer I[BYTE 2] : === user's choice in continue or quit

JAR S dummySfiIl o

AR repertiTIon

-- PROC transierQ
FROC transferO =)
-- wariap.e declarations
AR b.ock.size,
chd [BYTE 2]:
JAR bufferd [BYTIE maxblock.size + 1]:

W

E"\
- initialization of buffers
SE% £ = [1 FOR maxblock.size + 1]
EQ

uffer? [BYTE k] := '0'

¥

SKIP
SEgEi = [0 FOR nr.of.sizes]

block.size := sizetable(i]
-- input and output handling
-- i1nput frem two channels
= (1 TR repetition]

{100, ch0, dummy?)
receive (100,buffer0,dummy0)

)
!

SEQ : = {1 FOR repetition]
SED
receive - 100,ch0, dummvQ) .
senc(60,.0,buffer0,1,biock.size)
SKI?

-- input from three channels
SEQ 3 = [1 FCR repetition]
SEG
feceive Eloo,cho,dummgo)
receive (100,buffers,dummy0)
SKIP

-- output to three channels
SEQ] = (1 FOR repetition]
EQ

150

. m e
PR NENEY Y, cR ENLNa N
L BE e N oo N BN

receive (100,ch0,dummg0) _
IPsend(60,10,buffer0,l, lock.size)

-- input from four channels
SEgE% = [1 FOR repetition]

receive gloo,chq,dummgo)
KIPrece:.ve 100,buxrferQ, dummyQ)
S

-- output to four channels
SEgE% = [1 FOR repetition]

receive (100,ch0,dummyQ) 4
send(60,:0,buffer0 i,5lock.size)

-

-- all output and input in parallel
SEQE% = [1 FOR repetition]
S

receive (100,chQ,dummy0)
PAR

recelve (100,buffer0,dummy0)
send(60,.0,buffer0,l,block.size)
SKI?
SKIZ?:

-- main program
SEQ
repetition := 20
answer (BYTE 1] := 'Yy!
WHILE answer|BYTE 1] = 'Y
SEQ

transfer)
receive (100,answer,dummy0)

PAR)
operating.svstem
userl

151

e Y

* L T T e T e T e T N e T S e A
Y \"\'_-. P e S A e R S AL,
Ll ndins 2o R, N PN N P 3

DR

~

s cLe
CIR .
Al s

DO RN

S S v

LT DR

X 1 ¥ 8 € XN

a

RN EFRREN

{9
AW,

'

£ == SC PROC transfer2.b003 _
) -- PROC transfer2.b003 (CHAN A,B,C,D,VALUE this.transputer,route.table)
: PROC transfer2.b003 (CHAN A,B,C,D,

. VALUE this.transputer,
, t0,tl,t2,t3,td,t5,t6,t7,t8,t9,
t10,ti1,£12,¢13, tiq, 15 t1é,ti7) =

-- remote_os,.tds
R A ATRR R Ko kAR A ko A AR KRk K ok ok e A e ok ok ok ok ke ok ok ok ok 5k ok

=== In this place should be imbedded the filed fold *
--- REMOTE_O0S.TDS, which contains the source code of the *
== ope;atln? system for remote transputers. *
--- It is fully documented in Appendix E. *

ARRAAARARARAAARKARKRARAAARARRRARARKRAARRRRARAAARARAR AR KR X

-- PROC user?
PROC user2 ‘ ,
constants and variables declarations

DEF sizetable = TABLE [1, 2, 4, 3, 16, 32, 64, 128, 256, 512,

. 1024, 1280, 2048, 4096]:
DEF nr.of.sizes = l4: ==~ # of entries in the above table
DEF maxblock.size = 4096: --- max from the above table)
VAR answer [BYTE 2] : --- user's choice in continue or quit
TAR dummyOf1]
7AR repetition

’ -~ PROC transfer0
PROC transfero0
-- variable declarations
VAR block.size,
chO [BYTE 2]: .
VAR bufferQ [BYTE maxblock.size + 1]:

SEQ . . .
-~ initialization of buffers

SEg k [1 FOR maxblock.size + 1]

E
guffero (BYTE k] 0!
SKIP

i

block.size sizetableéi]
-- input and output handling
== input from three channels
SEQ j = [l FOR repetition]

J
E
receive (110,ch0,dummyQ)
SKIPrecelve (110, buffery,dummy0)

[0 FOR nr.of.sizes]

G

-- output to three channels
SE%E% {1 FOR repetition]

receive (110,ch0, dummyQ) '
I send(70,10,ouffer0,1,block.size)
SKIP

-- input from four channels
SEgEé [1 FOR repetition]

receive gllo,cho,dumm 0)
SKIPrecelve 110,buffer0, dummy0)

-
«

-~
i)

e {-.'. "

C eyt

-~ output to four channels

i

152

PR L N S PR
e L

g

{1 FOR repetition]

e e T e e e N e e g N e e S e T i e e T e e Y
" ~ *;- '.-.J.l"p‘(J '5"‘-“ \{‘_‘l. df" .‘ “ -_I e .

L e]

“

I\

‘3] @

et
(-I"q".f-‘

. . gav e auat - N o gae . > v e aa - 8at 32 arh alA .
Wat\ ¥ w Wou Wy - " Wy - v ¥ Wy - - W, W L W WV P - - wXg

receive (110,ch0,dummg0))
send(70,10,buffer0,1,block.size)

SKIP +
-- all output and input in parallel .
SEgE% = [1 FOR repetition]
. receive (110,ch0,dummy0) X
PAR

receive (110,buffer0,dummyO)
send(70,10,buffer0,1,block.size)

S
SKIP:
-- main program
SEQ d

repetition := 20
answer {BYTE 1] := ‘Y!
WHILE answer|BYTE 1] = 'Y
SEQ
transfero
receive (110, answer,dummyQ)

PaR i
operating.system
iser2:

.

AT AT A AT 1 TS VSIS P A

A AN atan aAte A Nagie dbataie g ts" Ratah uan taq sal val A " . - 920" 0a "S.A b A ' &a'h 2t 4, L0 L0 AP ASEpnl B ahi ahg g A ginh ang b gl

ry

i NP R

)4

f -- SC PROC transfer3.b003)

. -- PROC transfer3.b003 (CHAN A,B,C,D,VALUE this.transputer,route.table)

; PROC transfer3.b003 (CHAN a&,B,C,D,

; VALUE this.transputer,

| t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,
t10,tl1l,t12,t13,t14,¢t15,tl6,tl7) =

-- remote_os,tds

) mme RARRRTRK AR I K IR K AR A A K e R K Ak ok ok ok ok ok k
N === In this place should be imbedded the filed fold *
j -=-- REMOTE_OS.TDS, which contains the source code of the *
q -=-- operating system for remote transputers. *
d --- It is fully documented in Appendix E *

- FAEARARAAKAKK ﬁc***************gxx*7‘(****;*******************

-- PROC user3
PROC user3 = '
-=- constants and variables declarations
DEF sizetable = TABLE { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 1280, 2048, 4096]:

DEF nr.of.sizes = 14: --- # of entries in the above table
DEF maxblock.size = 4096: --- max from the above table ‘
VAR answer [BYTE 2] : --- user's choice in continue or quit

! VAR dummyO(i]

" 7BR repetition

¢ -- PROC transfer0

PROC transferQ = ,
-- variable declarations
VAR block.size,

8 chO [BYTE 2]: ,

e VAR buffer0 [BYTE maxblock.size + 1]:
> SEQ .

> -- initialization of buffers

SEgEk = [1 FOR maxblock.size + 1]

T | Busfero [BYTE K] = 10
SKIP

SEgEi = [0 FOR nr.of.sizes]

lock.size := sizetableéi]

-- input and output handling

-= input from four channels

SEQ 3 = [1 FOR repetition]
SE

receive gIZO,ChO,dUmmyo)
. SKIPrecelve 120,buffer0, dummy0)

-= output to four channels
SEgEé = [1 FOR repetition]

receive (120,ch0,dummyQ) ‘
- send(80,10,buffer0,1,0lock.size)
IP

A el T N ot

== all output and input in parallel
SESE% = {1 FOR repetition]

receive (120,ch0,dummyO0)
PAR

«Te'a e 8l

, receive (120,buffer0,dummz0)‘
K send(80,10,buffer0,1,block.size)
& SKIP

SKIP:

1
L
154 ‘
L
L
{

P A I T T

CLSARTNLN OV, 0N

A Y Y
-

oS P T T e T R a
YOERS Y, BN .

-- main program
SEQ

repetition := 20
answer[BYTE 1] := 'Y!
WHILE answer[BYTE 1] = 'y
SEQ
transfer0
receive (120,answer,dummyQ)

PAR
operating.system
user3 :

P AR gn Ao e ol SR, & ST

-- configuration
-=- Link Definition

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

-~ Variables

DEF

linkOout
linklout
link2out
link3out
linkQin
linklin
link2in
link3in

NGB WN+HO

root = 10:

and Constants Declarations

DEF max.pipes = 20:
CHAN pipe [max.pipes]:

PLACED PAR

-- PROCESSOR

PROCESSOR root

PLACE pipe
PLACE pipe
PLACE pipe
PLACE pipel!
2LACE »d1ipe/
PLACE pipel 2]
PLACE nipe(S)
PLACE pipe(7]

hostproc (pipe{
G

root

AT linkOin
AT linklin
AT link2in
AT link3in
AT linkOout
AT linklout
AT linkZout
AT 1link3out

g],piper’Z},pipeM},pipe{g]Z

,pipe{3],pipe(5], pipe

4,5,6,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

-= PROCESSOR 92
PROCESSCOR 0

PLACE pipe(l
PLACE pipe|©
PLACE pipe[0
PLACE pipe(8

transfer0.b003

~= PROCESSCR 1
PROCESSOR 1

PLACE pipe[3]
PLACE pipe[10
PLACE p;pelZ%
PLACE pipe[l

transferl.b003

-- PROCZSSOR 2
PROCESSOR 2

N Te

A e e S P AT P AT A e

PLACE pipe{35]
PLACE pipe|8
PLACE p;pet4
PLACE pipe(9

transfer2.b003

S

AT linkOin
AT linklin
AT linkOout
AT linklout

(gipe[l],pipe[9],pipe[0],pipe[8],
0,6,5,7,0,0,0,0,0,0,4,0,0,0,0,0,0,0)

AT linkOin
AT Zinklin
AT linkOout
AT linklout

(gipe[3],pipe[10],Pipe[2],pipe[11],
7.0,6,5,0,0,0,0,0,0,4,0,0,0,0,0,0,0)

AT linkOin
AT linklin
AT linkOout
AT linklout

(gipe[sl,pipe[al,pipe[4],pipe[9],
5.7,0,5,0,0,0,0,0,0,4,0,0,0,0,0,0,0)

156

.\."\;.3._-..,\.,\.‘.\.“-..;.‘.' ':f-';'\:" _\.. _-.;' -_:_._
T . a

R I T S,
R NN

P
A A A

Iff.v,\ Yy ¥y .'rr

@2 S

> WL N e g RPN URCON O VNINTUTRTN Sals bl ol Sal telfak tad Sad tey

»
'
=-- PROCESSOR 3
PROCESSOR 3 o
PLACE pipe 71 AT linkOin
PLACE pipe[1l] AT linklin
PLACE pipe 68 AT linkOout :
PLACE pipe[1Q] AT linklout :
transfer3.b003 (gipe[?],pipe[ll],pipe[s],pipe[lo],
6,5,7,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0)
)
!
)
157 y
)

- L O

A .

B
RS A A AT S O
Becall b s

s \-‘_-- LA CR RS \-\-\\"‘- N

- T W W
d

LIST OF REFERENCES

L. Garret, D. R., 4 Software System Implementation Guide and System Prototyping
Facility for the MCORTEX Executive on the Real Time Cluster, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1986.

9

Rowe, W. R., ddaption oy MICORTEX to the AEGIS Simulation Environment, :
M.S. Thesis. Naval Postgraduate School. Montereyv, California, June 1984,

LI

INMOS Limited, The Transputer Family, June 1986.

4. INMOS Limited, IMS BOO! Evaluation Board User Manual, 1985.

(o]

INMOS Limuted, [MS B003 Evaluarion Board User Manual, 19835. f
6. INMOS Limited, /MS B004 Evaluation Board User Manual, 1985.
7. Evin, B. , Implementation of a Serial Delay Insertion Type Loop Communication

for a Real Time Multitransputer System. M.S. Thesis, Naval Postgraduate School, ;
Monterey, California, June 198S. '

) b

8. Selcuk, Z., Implementation of a Serial Communication Process for a Fault 3

Tolerant, Real Time, Multitransputer Operating System, M.S. Thesis, Naval :

Postgraduate School, Monterey, California, 1984, -

9. Vanni, J. F., Test and Evaluation of the Transputer in a Muititransputer System »

Configuration, M.S. Thesis, Naval Postgraduate School, Monterev, California, 7

June 1987, A

10. INMOS Limited, IMS D600 Transputer Development System, 1985. i

11. Shepherd Roger, Extraordinary use of transputer links, INMOS Technical note |, >
November 1986. :

®

158 :

)

(]

by

BIBLIOGRAPHY b

Heath M. T., The Hypercube: A Tutorial Overview, Oak Ridge National Laboratory, iy

1986.)y

INMOS Corporation, Compiler Writers Guide, Draft, 1986. N

INMOS Limited. OCCAM Programming Manual, 1983. ‘

INMOS Limited, Transputer Reference Manual, October 1986. :

cterson & Silberschatz, Operaring Svstems Concepts, Addison-Wesley Publishing Co..

[nc., {983,

Tanenbaum A. S., Computer Nerworks, Prentice Hall, New Jersey, 1981. ®

Wewtzman C., Distributed Micro: Minicompurer Systems, Prentice-Hall, New Jersey, -

1950, .

@,

[

[)

]

159 .

'

*

®

.

P

A

AN AONINOENIN ~ o e e S T e y

ChuCenclan: aan s gb o ac um & &

INITIAL DISTRIBUTION LIST

No. Copies .

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Librarv. Code 0142
Naval Postgraduate School
Monterev, CA 93943-3002

Department Chairman. Code 32 1
Department of Computer Science

Naval Postgraduate School

Monterev, CA 93943

4. Dr. Uno R. Kodres. Code 32Kr 3 A
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93942

5. Dr. Daniel L. Davis, Code 52Dv 1 .
Department of Computer Science .
Naval Postgraduate School .
Monterey, CA 93943

6. Daniel Green. Code 20F 1
Naval Surface Weapons Center
Dahlgren, VA 22449

7. Jerry Gaston, Code N24 1 .
Naval Surface Weapons Center o
Dahlgren, VA 22449

8. CAPT. J. Hood. USN ! .
PMS 400B3 3
Naval Sea Svstems Command <1
Washington D.C. 20362 L

9. RCA AEGIS Repositorv |
RCA Corporauon
Government Svstems Division
Mail Stop 127-327
Moorestown, NJ 08057 L

10. Library (Code E33-05) \
Naval Surface Weapons Center
Dahlgren, VA 22449

to
to

(99)

I T URS

160 -

11.

12.

13.

14,

r—
{h

16.

17.

18.

19.

21

Dr. M. J. Gralia

Applied Physics Laboratory
John Hopkins Road
Laurel, MD 20702

Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

Estado Maior da Armada
Brazilian Naval Commussion
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Diretoria de Ensino da Marinha
Brazilian Naval Commuission
4706 Wisconsin Ave.,, N.W.
Washington. DC 20016

Diretoria Jde .Armamento ¢ Comunicagoes da Marinha
Brazilian Naval Commission

4706 Wisconsin Ave., N.W.

Washington. DC 20016

Instituto de Pesquisas da Marinha
Brazilian Naval Commission

2706 Wisconsin Ave.., N.W.
Washington, DC 20016

Instituto Militar de Engenharia
Praia Vermelha., Urca

Rio de Janeiro, RJ

CEP 20000 , BRAZIL

Instituto Tecnologico da Aeronautica
Sao Jose dos Campos, SP
CEP 11000 , BRAZIL

Pontificia Universidade Catolica

R. Marques de Sdo Vicente 225, Gavea
Rio de Janeiro, RJ

CEP 20000 , BRAZIL

Pete Wiison

INMOS CORPORATION

P.O. Box 16000

Colorado Springs, CO 80935-16000

David May

INMOS LTD.

1000 Aztec

West Almondsbury, Bristol, BS12 45Q, UK

161

PP

St e e
i

RS, Ty

A R YNY

N "¢ “a u ¥

IR T I
» N

A -8 2 il Bl , * Bah uag ¢ a9
Yol R tad el tap 1 atal (" ! o ! aatatal, tat, et Sttty VU] v ey aiiarato g oF

22. MAJ/USAF R. A. Adams, Code 52Ad [
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

23. LT. Mauricio M. Cordeiro, Br. Navy 2

Brazilian Naval Commission (DACM)

4706 Wisconsin Ave., N.W,

Washington, DC 20016)
24. LCDR. Gilberto F. Mota, Br. Navy 1 '

Brazilian Navai Commission { DACM)
4706 Wisconsin Ave., N.W.
Washington. DC 20016
25. LCDR. J. Vanni Filho, Br. Navy 1
Brazilian Naval Commission (DACM)
4706 Wisconsin Ave., N.W. g
Washington., DC 20016

162

N Y XJGP YIS

R A Ny }\ o ‘ RTINS S) '..;.,u‘,‘;,:.‘;._;.}\ e T T T . N AR AL LY
e A s,) e .

.....

CA A A N N

S I
Ay
”—l\..-\.- 1y &

